
Sketch-Based Pipeline for Mass Customization

1 Introduction

The digital age in manufacturing is coupled with new output devices that allow mass customization and rapid
manufacturing, revolutionizing the way how we design, develop, distribute, fabricate, and consume products.
To open the new technology to a broad audience of users it is one of the central challenges to develop effective
and easily accessible interfaces that support the customization of products. Especially, because it is difficult for
most users to create their own content using a 3D modeling system.
We rather suggest a different workflow where the user starts from an already existing object that is retrieved
from a large 3D shape collection and modifies it intuitively. Therefore it is necessary to not only have the
possibility for direct shape modifications but also to search in a large collection of 3D shapes within one unified
interface.
Sketching as a tool that supports ideation and gives the user the freedom to create images easy and fast [26], [22]
provides an exceptional input tool for searching large image and 3D shape databases, as well as modeling 3D
surfaces.
In this work we present, for the first time, a closed workflow from a user drawn 2D sketch to a 3D printed
personalized object by taking manufacturing limitations into account. This is achieved by combining different
sketch-based retrieval and modeling aspects, enabling the user to control the process with a sketch-based input
metaphor.
In the development of the system we focus on two main aspects. First, we want to give non-expert users an
easy-to-use interface for customized fabrication. Second, we want to ensure that each 3D model created with
our system can be manufactured regardless the modifications made. Both aspects are truely challenging and
still an active field of research. Amateur users often have limited drawing skills resulting in strongly simplified
sketches that, for instance, do not take perspective into account. To this end, we use a retrieval system by Eitz et
al. [11] that works sufficiently even with a simple set of strokes conveying rough visual ideas as commonly done
in architectural or in product design. We also provide modification possibilities that require only a very limited
prior knowledge about modeling tools and 3D surface manipulation very similar to Zimmermann et al. [31].
One central observation is that not every modification can be fabricated due to geometric errors introduced
during the deformation process or due to 3D printing limitations. Hence, we present a novel approach to
take fabrication limitations into account. Figure 1 shows the different components of our system that can be
summarized as follows:

1. The process starts by drawing a simple binary sketch as outlines of a 3D shape. This sketch image is used
to query a large database containing 2D line renderings of 3D models, where each rendering maps to the
corresponding 3D model (see Section 3).

2. By selecting an object out of the result set of the search the system switches to the modeling step of our
pipeline. The user is able to modify the object directly by drawing additional strokes outlining the new
silhouette of the shape. Mesh deformation parameters are derived and the model is deformed according
to the user strokes (see Section 4).

3. During the deformation process we have to make sure that the model is still printable. Therefore each
deformation step triggers a 3D printing simulation that validates the user’s modification. The deformation
is only executed as long as the printing constraints are fulfilled. The final modified object is printed using
a standard off-the-shelf 3D printer (see Section 5).

Note, as sketches are less suited to draw precise details our system also does not incorporate these features. We
neither can distinguish between very fine detailed differences in the query sketches nor modify the models very
precisely.
The system described in this paper is an extended version of the pipeline proposed by Hildebrand et al. [15].

2 Related Work

Line Drawings and Sketch-based Shape Retrieval To develop sketch-based interfaces it is necessary to
understand how people create line drawings [6] and how they sketch objects [10]. Specifically Eitz et al. [11]
report on a large-scale experiment which provides insight into how an average user of a 3D retrieval system
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Figure 1: We present a sketch-based pipeline guiding the process of manufacturing. We start by sketch-based
retrieval of a user sketch in a large 3D model database. We show the possibilities of sketch-based modeling to
customize the results intuitively. Customized 3D shapes are manufactured using a 3D printer.

would sketch a query for such a system. Funkhouser [13], Yoon [30] and Eitz [11] recently proposed systems
enabling the user to retrieve shapes from a large 3D model database. These ideas work on a set of descriptors
that are extracted from the 3D models in a preprocessing step. However, Funkhouser and colleagues [13] rely
on complete 3D shape descriptors whereas Eitz et al. [11] and Yoon et al. [30] extract the features on 2D images
that are the renditions of a set of line renderings (see Section 3). Our shape retrieval process is bases strongly
on the work of Eitz [11].

Sketch-based Shape Modeling There is a lot of work about the nature of sketching and how it can be
embedded in modeling tools to enhance and simplify design work by Suwa et al. [26], Tversky et al. [27] and
Buxton [4]. There is also a variety of sketch-based modeling systems. Recently, Eitz and colleagues [12] proposed
a framework to synthesize novel images from an image collection relying on the sketch-based input metaphor.
Modeling 3D shapes very intuitively using sketches was introduced by Igarashi et al. [17]. Follow up research
was done by Bae et al. [2], Schmidt et al. [23] and Nealen et al. [21], [20]. Our approach mostly relies on the
approach of Zimmermann et al. [31] who use already existing geometry that is modified using simple silhouette
strokes.
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Figure 2: The 3D printing process is illustrated.
The object is printed within a printing volume. A
printing head generates the object layer-by-layer
in an additive manner.
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Figure 3: (a) 3D printing of articulated charac-
ters [1]. (b) Fabrication of subsurface scattering
effects [14]. (c) Modification of geometry to sup-
port printablility and stability [25]. (d) 3D print-
ing of tissue [5].

3D Printing and Digital Fabrication 3D printing is the process of fabricating solid objects from digital
shapes. It is achieved by successively stacking layers of different shape. Recent publications also focus on further
possibilities of this additive manufacturing technology. Hiller et al. [16], Cohen et al. [5], Lipson et al. [18] and
Vilbrandt et al. [28] discuss the general properties of 3D printing, the challenges and possibilities. Baecher and
colleagues [1] propose an automatic process from an input mesh to a fabricatable model that approximates the
3D kinematics of a virtual character by adding physical joints into the 3D printed model. Bickel et al. [3] acquire
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Figure 4: We present a sketch-based pipeline guiding the process of manufacturing. We start by sketch-based
retrieval of a user sketch in a large 3D model database. We show the possibilities of sketch-based modeling to
customize the results intuitively. Customized 3D shapes are manufactured using a 3D printer [11].

the deformation properties of a material and reproduce this behaviour using a multi-material 3D printer. Dong et
al.and Hasan et al. [9],[14] show that the surface appearance and subsurface scattering effects of objects can
be captured and also reproduced. One of the major challenges regards the printability of 3D shapes. Recently,
Stava et al. [25] focused on the stability of the object and adjusted the geometry according to the manufacturing
constraints. This closely relates to our proposed solution and could be additionally added as a post-process to
our method.

3 Shape Retrieval

The basic idea behind the retrieval process is to compare the 3D models based on a histogram of features, as
described in detail in Eitz et al. [11] [10]. The features are extracted in a pre-process over all models in the
database. However, to match the 2D input user sketch with the 3D models we do not extract features in the 3D
domain. We rather compare the 2D user input directly in the same domain. To this end, we generate 2D sketch-
like drawings with non-photorealistic rendering algorithms [8] and render the 3D models with selected feature
lines. We also use several virtual viewpoints to collect as many perspectives of the shape as possible. This
turns the problem into a comparison of a single sketch image to several two-dimensional sketch-like renderings
per object. Keep in mind that we do not compare the images directly but a set of features extracted from the
images. Therefore we have to define a feature vector that describes the properties of the user sketch and the
line renderings. We also rely on a specific data representation [24] to access the data fast. The complete feature
extraction pre-process can be summarized in the following steps for each model in the database (see Figure 4
from right to middle):

View selection and rendering We render the 3D model from different view points uniformly distributed
over the bounding sphere. We place a virtual camera at the each view point with the viewing direction to
the center of the sphere and create line renderings using the view-dependent algorithm suggestive contours [8].
Suggestive contours convey the shape by drawing lines that are clearly visible on parts of the surface, where a
true contour would first appear with a minimal change in viewpoint (see Figure 4).

Feature extraction Our goal is to compare image features, i.e. descriptors, that capture information about
the user sketch and the line renderings. We extract the features locally at several positions as image patches
over the image. We base our descriptor on gradient information, specifically we use a histogram of oriented
gradients, as described in Eitz et al. [10]. We define the gradient as Gaussian derivatives of the image and
store the magnitude of the gradient vector in the bins of a histogram. The histogram consists of spatial and
orientational bins stacked into a single column vector. We refer the reader to Eitz et al. [10] about the details
of the descriptor.

Visual vocabulary A common approach to query large databases is to use a bag-of-features representa-
tion [24]. The idea is to reduce the datasize by quantizing the feature vectors and build a so-called visual
vocabulary using k-means clustering. Each cluster defines a visual word in feature space. To this end, we ran-
domly sample one million local feature vectors as training data. The resulting cluster centroids form the visual
words representing the local features in the same cluster. Counting the occurrences of visual words in a view



4

(line rendering) yields a histogram that is typically very sparse, as the number of distinct features occurring in a
single view is usually much lower than the size of the vocabulary [11]. In order to achieve quick lookups during
the query stage we store the resulting frequency histogram in a standard inverted index datastructure [29].
Once we have generated the visual vocabulary and the inverted index from it we can query the system using
an input sketch. To retrieve a set of resulting 3D models that match the input sketch we require the following
steps (see Figure 4 from left to middle):

Feature extraction At runtime, the user draws an input sketch and queries the retrieval pipeline. As before
for the offline indexing we extract local feature vectors in the sketch image. The feature vector is quantized
against the visual vocabulary and represented as a histogram of visual word occurences over the sketch.

Retrieval During the retrieval process we want to find similar line renderings (and their corresponding 3D
models) to our input sketch. Two images can be defined as similar if their histograms and their corresponding
high-dimensional feature vectors point into the same direction. Typically histograms are not compared using
raw word counts but weights expressing the importance of the visual word. We use a common function called
tf-idf (term frequency inverse document frequency) [29]. The system computes the closest matching visual words
and returns a set of corresponding views that are mapped to the resulting 3D models as can be seen in Figure 5.

Figure 5: Results of the sketch-based retrieval method each with the user drawn sketch.

4 Shape Modeling

We continue the sketch-based input metaphor within the next step of our pipeline. At runtime, the user selects
one of the matching retrieved 3D models which best fits his preference. We define a sketch-based modeling
process very closely related to Zimmerman et al. [31]. We enable the user to modify the model by sketching new
view-dependent silhouettes of the mesh. For each stroke drawn by the user a corresponding feature-preserving
deformation is computed. The steps of the interaction can be comprised as follows (see Figure 6) [31]:

1. The user draws a stroke that suggests a deformation of the input model (Fig. 6(a)). To be able to deform
the model we first identify a set of silhouette lines in the 2D rendering of the shape. These silhouette
describe depth discontinuities in the rendering. We segment the extracted lines in image space and store
them as a set of feature lines (Fig. 6(b)).

2. The stroke (target line) is matched against all feature lines to find the corresponding feature lines close
to the stroke. Our goal is to to derive a subset of the silhouette that works as deformation handles in 3D
(see Figure 6(b,c)).

3. Given a matching feature line we need to determine the corresponding mesh vertices and their transformed
positions respectively. This is done by projecting the pixel positions of the feature line back in object space
using the corresponding depth map. We derive the displacement that is necessary for the deformation
from the relative vertex positions onto the target line (see Figure 6(d)).

4. We define region of interest that filters all vertices that will be influenced by the deformation process. We
use a region growing algorithm based on the vertex handles (see Figure 6(e,f)). The derived deformation
parameters are used as input to existing mesh deformation tools [21]. Figure 6(g,h) show the deformation
result.
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Figure 6: The example of the Stanford bunny shows the single steps of the modeling steps. c©Zimmermann [31]

For further details please refer to Zimmermann and colleagues [31].

5 Fabrication

The objective of this work is to manufacture the resulting modified shape. An important observation, however,
is that the object could potentially be deformed in a way that it cannot be fabricated with a 3D printer, so
limitations in the fabrication process are an important consideration. Therefore we focus on three aspects that
could arise during the object modification (see Fig. 7):

1. thin and fragile structures that introduce problems during printing or produces unstable results.

2. self-intersections and interpenetration of surface parts.

3. exceeding of the available printing volume.

Our goal is to guarantee the printablility regardless the modification. We ensure this by simulating the 3D print-
ing process. Therefore it is necessary to understand its central operation. The object is sampled equidistantly
along the 3D printing normal direction (see Figure 2). At each sample point a plane-geometry intersection
is performed and a set of intersection slices (polygons) describing the outer and inner contours is generated.
We simulate the production process by slicing the object and evaluating each slice geometry independently. If
any of the intersection polygons resulting from the deformation violate the constraints above we backtrack the
deformation linearly to the point the printing simulation will generate a valid slices.

Different to Stava et al. [25] we do not adapt the geometry directly to make sure the object is printable. We
also do not take material behaviour into account. Our goal is to find a deformation between the original shape
and the desired target shape that is as close as possible to the modification stroke drawn by the user. In other
words, we propose an automatic correction of errors resulting from the flexible sketch-based interface metaphor.

Figure 7 shows a 3D model sliced in a set of production layers. Each of these layers could be modified during
the deformation process. Our pipeline evaluates the three cases mentioned above as follows:

Printing volume The user drawn stroke results in a target deformation that exceeds the printing volume.
Our framework tries to re-position and fit the bounding box of the deformed model within the printing volume.
If that fails we backtrace to the ideal deformation that still fits the printing volume. Another approach would
be to segment the object into several parts similar to Luo et al. [19] and print them separately. (see Figure 7(b))
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Figure 7: (a) The original model and one intersection slice. (b) The deformation exceeds the printing volume
even after the object is recentered. (c) One of the resulting intersection polygons is sellf-intersecting and inside-
outside of the shape becomes ambiguous. (d) The deformation introduces very thin structures that are difficult
to print or are highly fragile.

(a) (b) (c) (d)

Figure 8: (a) The original contour (b) Floodfilled contour. A skeletonization using morphological operators is
computed. (c) Distance transform over floodfilled binary image. (d) The distances are mapped to the skeleton
pixels. Clusters of neighboring pixels are identified if they are below a threshold. If the cluster size of neighboring
pixels exceed a length d the slice violates the deformation target.

Self-intersections Figure 7(c) shows a case where the slicing process after the deformation results in polygons
that are self-intersecting and inside-outside of the shape becomes ambiguous. This also leads to significant
printing problems. We check all resulting polygons on self-intersection using the Bentley-Ottmann algorithm [7]
and solve the issue by backtracking the deformation until the model has valid slices.

Thin-features A deformation that introduces very thin structures (see Figure 7(d)) is difficult to print or
produces results that are highly fragile. We identify this case in image space based on the idea of connected
regions that lie very close to the polygon border but exceed an overall area or length. We start the thin
structure test by rendering the polygon in printing direction into a texture and calculate skeleton pixels S
using morphological image operators. We also compute a distance transform D storing the distance from any
pixel within the slice polygon to its closest border pixels (see Fig. 8(a,b,c)). To identify regions in the polygon
where the skeleton is very close to the polygon border we map the distances onto the skeleton by SD = S ·D
and evaluate SD to find connected regions on the skeleton pixels (see Figure 8(d)). To this end, we define two
thresholds relating to the 3D printing parameters. We define τ as the maximum distance to the border (minimal
printing resolution or width of thin structures) and d as the size threshold for connecting neighboring pixels
that are below τ . We filter all pixels p in SD with pi ∈ SD < τ . All 8-connected neighboring pixels pi < τ
define a connected component C. The length ‖C‖ > d identifies very thin components in the graph. We again
solve this violated constraint by interpolating between source and target until constraints are valid.

6 Results and Discussion

We present an effective pipeline for sketch-based retrieval and modification of 3D models for the purpose of
manufacturing. While this combined interface is novel in itself we further identify and propose solutions for
three cases that introduce manufacturing problems during the sketch-based modelling process. User centered
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Figure 9: Results of our system. Left: The original user input sketch. Middle: The chosen search result
including the modifying silhouette strokes. Right: Final object after the deformation process.

interfaces for mass-customization open up many possibilities for further research. Specifically interesting is to
guarantee that the resulting 3D model is still printable. A deeper understanding of the production difficulties
is necessary to identify more cases and improve the quality of the digital manufacturing pipeline. Furthermore
a formal user study is necessary to evaluate the interface and incorporate feedback for improvements.
Figure 9 shows several examples created with our system. Our 3D model database consists of several thousand
3D models.
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