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ABSTRACT

We present PRISAD, the first generic rendering infrastructure for
information visualization applications that use the accordion draw-
ing technique: rubber-sheet navigation with guaranteed visibility
for marked areas of interest. Our new rendering algorithms are
based on the partitioning of screen-space, which allows us to handle
dense dataset regions correctly. The algorithms in previous work
led to incorrect visual representations because of overculling, and to
inefficiencies due to overdrawing multiple items in the same region.
Our pixel-based drawing infrastructure guarantees correctness by
eliminating overculling, and improves rendering performance with
tight bounds on overdrawing.

PRITree and PRISeq are applications built on PRISAD, with
the feature sets of TreeJuxtaposer and SequenceJuxtaposer, respec-
tively. We describe our PRITree and PRISeq dataset traversal al-
gorithms, which are used for efficient rendering, culling, and lay-
out of datasets within the PRISAD framework. We also discuss
PRITree node marking techniques, which offer order-of-magnitude
improvements to both memory and time performance versus pre-
vious range storage and retrieval techniques. Our PRITree im-
plementation features a five-fold increase in rendering speed for
non-trivial tree structures, and also reduces memory requirements
in some real-world datasets by up to eight times, so we are able
to handle trees of several million nodes. PRISeq renders fif-
teen times faster and handles datasets twenty times larger than
previous work. The software is available as open source from
http://olduvai.sourceforge.net.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types;

Keywords: Focus+Context, Information Visualization, Real Time
Rendering, Progressive Rendering

INTRODUCTION

PRISAD, our Partitioned Rendering Infrastructure for Scalable Ac-
cordion Drawing, is a generic Accordion Drawing (AD) infrastruc-
ture for rendering and navigating large datasets. AD is a visual-
ization technique that features rubber-sheet navigation and guaran-
teed visibility of selected nodes. Rubber-sheet navigation involves
the user-guided action of stretching on-screen regions of interest; a
stretched region has more screen real estate in which to draw more
unoccluded geometric items from the same world-space region.
When a region is stretched, the nailed-down borders of the win-
dow prevent data from being pushed off-screen and AD squishes
data in appropriate regions, as shown in Figure 1.

Guaranteed visibility of data, represented by geometric objects
on screen, is trivial with small datasets. The topological structure
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Figure 1: Left: A tree dataset drawn with uniformly allocated space
for each vertical node width and horizontal node height. Right:
When navigating by stretching a rubber-sheet surface, the distor-
tions allocate more screen-space to some regions of nodes and other
regions are squished into less screen-space.

of the tree shown in Figure 1, and colors for each node, are visi-
ble without navigation. However, when the size of the dataset be-
comes large, as in Figure 2, AD must guarantee the visibility of
all marked regions. A brute-force drawing algorithm, which would
render every node in the dataset, does not offer sufficient rendering
performance for animating such large datasets, especially with our
guaranteed visibility requirements.

As data is never pushed off-screen with AD navigation, we can
always map data from its infinite-precision world-space position to
our finite-precision dataset representation in screen space. AD nav-
igation leads to compressing regions of many data items to subtend
a small screen-space region, yielding high depth complexity. To
achieve scalable rendering performance for large datasets, we must
efficiently reduce the amount of overdrawing in dense screen-space
regions where drawing a subset of geometric data objects is suffi-
cient to represent the entire region. Culling the correct data in dense
regions is particularly difficult when we must guarantee the visibil-
ity of important features at all times. A correct drawing with no
overculling is visually indistinguishable from the brute-force ren-
dering where every item is drawn. We need both marked node vis-
ibility, and a proper representation of the dataset in every distorted
region of screen space.

We present our generic PRISAD infrastructure, and two applica-
tions built on it, both of which use Java with the GL4Java graphics
library. PRITree implements the feature set of TreeJuxtaposer for
visually comparing hierarchies [11], and PRISeq has the functional-
ity of SequenceJuxtaposer for visualizing multiple aligned genomic
sequences [16]. Our contributions include:

• Time-Efficient Generic Rendering: PRISAD tightly bounds
overdrawing in dense, complex regions by separating pixel-
based partitioning from application-specific rendering ac-
tions.

• Correct Generic Rendering: PRISAD eliminates overculling,
so no misleading gaps appear in the dataset picture.

• Space-Efficient Marking: PRITree computes and stores
marked regions of trees in structures capable of determin-
ing marking characteristics quickly, eliminating the need for
caching marking properties for each node.

• Space-Efficient Traversal: PRITree traversal algorithms for
drawing and picking exploit the dataset topology, instead of
adding a memory-expensive external data structure.



Figure 2: Top: For densely drawn regions of a dataset, we can mark
several regions of interest with guaranteed visibility, and we always
draw all marked regions that are smaller than a pixel. Bottom: In
the identically marked tree without guaranteed visibility, these small
regions, marked with red arrows above, may not be drawn.

• Correct and Efficient Sequence Rendering: PRISeq traversal
algorithms efficiently aggregate columns to accurately reflect
relative nucleotide proportionality.

This journal paper is an extended version of an InfoVis confer-
ence paper [15]. In addition to adding new material on picking
algorithms, we have completely reworked and expanded the expo-
sition of the sections on PRISAD, PRITree, PRISeq, and PRISAD
performance.

In the next section, we give an overview of related work. In
our PRISAD section, we present our generic approach to scalable
accordion drawing. We cover PRITree and PRISeq separately in
the next sections, and then evaluate their performance. Finally, we
describe possible future work and conclusions. We also include an
appendix , which contains supplementary details of our PRITree
rendering techniques.

RELATED WORK

The TreeJuxtaposer [11] application introduced AD navigation with
tree topologies and performed structural comparisons among a
small set of tree datasets. TreeJuxtaposer includes fast tree compar-
ison algorithms, which provide the primary bidirectional mapping
between common tree structures. The mapping allows users to vi-
sually determine structure, and the application uses the mapping

results to highlight regions of structural difference. Since Tree-
Juxtaposer scales to tree datasets with many more nodes than the
number of available on-screen pixels, highlighted regions would
not necessarily be visible without adhering to our requirements for
guaranteed visibility.

The AD infrastructure used by TreeJuxtaposer is optimized for
rectilinear trees and is not capable of displaying datasets from other
application domains. Also, the scalability of TreeJuxtaposer limits
the maximum size of single tree datasets to 550,000 tree nodes, or
comparisons of two 150,000 node trees [11]. DOITrees [8], for ex-
ample, have been used to explore the directory structure of the Open
Directory Project website [1], which contains more than 600,000
nodes. The rendering performance of large datasets becomes an
issue with non-trivial topological structures; the TreeJuxtaposer re-
sults that benchmark performance with only balanced binary trees
do not capture performance results with real-world datasets with
high-degree nodes. We compare the performance of TreeJuxtaposer
with PRITree in our performance section.

The TJC-Q and TJC applications [4] for AD tree browsing are a
considerable improvement on the original TreeJuxtaposer system.
The TJC-Q system, which runs on commodity hardware, handles
up to 5 million nodes, commensurate with PRITree. The TJC sys-
tem uses advanced graphics card features to handle up to 15 million
nodes, which is three times the limit of PRITree. However, these
systems do not support comparison between multiple trees, and
their algorithms are hardwired to work only with trees and could
not be easily adapted to a generic AD framework. They both use
the same top-down rendering algorithm, where subtrees that sub-
tend more than one pixel draw all of their children. This approach
leads to poor performance because of overdrawing for datasets with
high-degree nodes, and we note that it was only benchmarked for
balanced binary trees.

SequenceJuxtaposer [16] is an AD application for the visualiza-
tion of genomic sequences of up to 1.7 million nucleotides, using
a quadtree-based AD infrastructure built on the algorithms used by
TreeJuxtaposer. In contrast, standard Web-based genome browsers
such as the Ensembl [9] and UCSC [10] systems show sequence
data with jump cut transitions between different scales. In our per-
formance section, we compare PRISeq, shown in Figure 3, with
SequenceJuxtaposer.

Figure 3: PRISeq is a genome sequence visualization application built
on PRISAD with the feature set of SequenceJuxtaposer [16].

Slack discusses PRISAD and PRITree in detail in his thesis [14].
Few other information visualization systems can handle extremely
large datasets. Fekete presents a system that can handle treemaps of



one million nodes [6]. While AD could in theory be implemented
within an existing toolkit such as the InfoVis Toolkit [5], its fo-
cus on generality rather than scalable accordion drawing precludes
achieving the performance we describe here. The Tulip system
for graph drawing [2] is quite general and its data structures were
carefully designed for scalability. However, it would be very dif-
ficult to adapt Tulip for general accordion drawing, especially due
to our guaranteed visibility requirements for rendering. The Jazz
and Piccolo zoomable user interface toolkits [3] also provide sup-
port for multi-scale navigation through arbitrarily large 2D surfaces,
but not guaranteed visibility of landmarks or rubber-sheet naviga-
tion. NicheWorks [17], a graph visualization application that lays
out nodes radially, is capable of displaying graphs of up to 50,000
nodes with real time manipulation, and its performance decreases
linearly with dataset size. In contrast, PRISAD provides constant
rendering performance for datasets.

PRISAD

PRISAD provides support for navigation, culling, drawing, pick-
ing, and marking. Applications must be designed to interact with
the generic PRISAD infrastructure to benefit from its capabilities.
The interplay of control flow between PRISAD-enabled applica-
tions and the components provided by this infrastructure is shown
in Figure 4. We distinguish between a pre-processing discretization
stage that operates entirely in world-space, and the rendering step
that runs for each drawn frame where computations are handled in
screen-space coordinates. PRISAD-enabled applications must sup-
port the following functions:

• laying out the dataset as a collection of geometric objects in
world space

• gridding each geometric object between its four enclosing
grid lines

• seeding the partitioned ranges for drawing in priority order
• drawing representative geometric object for each range,

through selection or aggregation

The generic PRISAD components handle the remaining actions:
• initializing binary trees holding horizontal and vertical grid

lines
• mapping between geometric objects and grid lines
• partitioning grid lines into adjacent ranges based on screen-

space positions
• progressively controlling rendering for realtime performance
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Figure 4: Left: Initialization of a dataset in PRISAD applications
requires a world-space discretization phase, which must generate
several generic components from application-specific dataset struc-
tures. Right: The rendering phase separates partitioning from draw-
ing, which simplifies application drawing effort for faster pixel-based
rendering performance.

Split Line Hierarchy

The link between discretization in world space and rendering in
screen space is the grid of lines that keeps track of the stretching and
squishing of navigation actions. Figure 1 shows the deformation
of a small tree, with this malleable two-dimensional grid structure
explicitly indicated as an overlay on the rendered picture of the tree.
A split line is a dividing line of that 2D grid structure; split lines
partition the space in which the geometric objects are drawn and
are used to map world-space regions onto screen regions.
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Figure 5: A split line hierarchy is both a binary tree structure that
provides a linear ordering and a hierarchical subdivision of areas. For
instance, the region for split line B is bounded by its parent region
D, and B separates its bounded descendants A and C.

Figure 5 shows that a split line hierarchy provides both a linear
ordering of the lines, and a recursive subdivision of spatial regions.
Each split line may be moved independently in its region, and we
use a relative offset for the position of a split line in its bounded re-
gion. Moving a split line affects the absolute, screen-space position
of both the moving split line and all of its split line hierarchy de-
scendants. All AD implementations achieve O(log n) performance
for computing the absolute positions of split lines using similar hi-
erarchies, when any position is required by the rendering algorithm.
However, since we cache absolute positions of nodes, and only re-
quire absolute positions for O(p) split lines, for p pixels on screen,
the amortized per-frame cost of world-to-screen computation is also
O(p).

We use minimal memory overhead by decoupling the grid into
separate horizontal and vertical split line hierarchies, as proposed
by TJC [4]. In contrast, the original TreeJuxtaposer system uses a
quadtree data structure for partitioning in both directions simulta-
neously, and the memory required to maintain that data structure is
the primary limitation of its scalability.

World-space discretization

The pre-processing phase of discretization occurs in world space.
The application lays out the dataset as a collection of geometric
objects, and passes information about the size of split line hierarchy
needed to contain it to PRISAD for grid initialization. The gridding
phase finds the four bounding split lines that enclose each geometric
object, and if needed PRISAD will record the bidirectional mapping
between these split lines and geometric object in a lookup table.
For each of the four world-space discretization steps, we refer to
Figures 6 and 7 for illustrative examples in PRITree and PRISeq
with a small dataset.

Laying out The spatial layout of a dataset; that is, the world-
space position of the geometric objects that comprise the whole,
is determined by the application. For instance, layout in PRITree,
shown in Figure 6a, uses a standard horizontal rectilinear tree lay-
out method. Edges are drawn with T-shaped lines and nodes are
drawn as points at the junction of the T, with leaves right-aligned
on the side of the screen. PRISeq positions pre-aligned genomic se-
quences in the vertical direction, shown in Figure 7a, displaying the
nucleotides from left to right as color-coded boxes that represent the
bases A, C, G, or T . The two applications presented here have non-
overlapping layouts for geometric objects. Our generic PRISAD
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Figure 6: World-space discretization for trees. The map on the right
of d) shows the association between split lines on the left and leaves
on the right.
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Figure 7: World-space discretization for sequences. Mapping is per-
formed lazily as needed later, during rendering, to reduce the appli-
cation startup time.

infrastructure could in theory handle object overlap, but that would
add complexity to the application-specific drawing phase.

Initializing After layout, the application calculates how many
split lines are required in each direction, to allow navigation at the
appropriate granularity for the geometric structure. This calculation
is straightforward for both PRITree and PRISeq, as shown in Fig-
ures 6b and 7b. For trees, we want one split line between each leaf
in the vertical direction, and one between each layer from the root
to the leaves horizontally. For sequences, we need one split line be-
tween each nucleotide box. The PRISAD infrastructure can create
and initialize the two split line hierarchies after being supplied with
the required sizes by the application.

Gridding In PRISAD, gridding is the specification of which
four split lines enclose a world-space geometric object on the top,
bottom, left, and right sides. In PRITree, the space required by
each leaf edge is uniform in one direction, with one edge between
each pair of equally-spaced split lines. However, horizontal edge
lengths, and the vertical extent of the interior node edges, depend
on the tree topology, as shown in Figure 6c. For PRISeq, in Fig-
ure 7c, the nucleotide boxes are all of uniform size in world space,
so gridding is straightforward.

Mapping The final discretization step provides a constant-time
bidirectional lookup function to map between the enclosing split-
lines and the geometric objects. In PRISeq, there is no need to ex-
plicitly calculate or store extra information because of the regular
grid structure inherent in the horizontal sequence rows and verti-
cal columns of aligned nucleotides. However, we make use of the
PRISAD mapping infrastructure when we perform the first scene
rendering. Instead of mapping at initialization, which becomes slow
for large datasets, we map as part of the application-specific draw-

ing stage. This means, as shown in Figure 7d, that no mapping is
done in the PRISeq world-space discretization stages. Details about
how we map aggregated columns of nucleotides are in the PRISeq
section.

In PRITree, the layout is more complex, so the relationship be-
tween tree nodes and split lines must be explicitly recorded before
the first rendering. Figure 6d shows the table stored by PRISAD
that provides O(1) access from a leaf node to the split line assigned
to it, and vice versa from a split line to its attached leaf node. Inte-
rior nodes are not mapped to split lines, since screen-space render-
ing operations that require the bidirectional mapping operate only
on the leaves of the dataset. This mapping allows for constant-time
bidirectional lookup: leaves can be found near a given screen-space
position, and likewise on-screen positions can be found given a leaf
object from the topology.

Screen-space rendering

PRISAD rendering occurs in screen space, and again the control
flow bounces between the infrastructure and the application. First,
partitioning an entire split line hierarchy creates a list of ranges that
cover small screen-space areas of roughly equal size. Seeding then
allows the application to impose an order of drawing by turning
the range list into a priority queue. The infrastructure has optional
support for progressively rendering the prioritized queue, checking
for interaction or animation events at regular intervals. Finally, the
application is responsible for determining a single geometric object
to draw for each range in the queue. Figure 8 shows a small PRITree
example.

All previous AD infrastructures, which are tightly coupled to
application-specific algorithms, perform partitioning during draw-
ing using a top-down approach. They begin ordered rendering by
enqueuing a single root object, and recursively enqueue its de-
scendants until some stopping criteria are satisfied. Determin-
ing whether it is safe to terminate the recursion requires complex
application-specific calculations, in particular because of the guar-
anteed visibility requirement. Generalizing this top-down hierar-
chical approach at the infrastructure level would be difficult, even
for applications with highly regular structure such as the grid-based
layout of aligned sequence data. The key innovation of PRISAD is
separating screen-space partitioning, which can be handled generi-
cally, from the drawing that must be done by the application. Our
application-specific drawing algorithms are simple, are executed a
bounded number of times linear in the number of partitions, and
do not require computation of screen-space positions to guarantee
coverage of specific pixels.

We note that because accordion drawing is explicitly based on
discretization, the classical topological definition of rubber-sheet
geometry as a homeomorphic transformation does not hold [13]. A
homeomorphism is a bijective, continuous function with a contin-
uous inverse, whereas the discretization that we carry out in order
to efficiently handle large datasets is of course not continuous. We
nevertheless use the term rubber-sheet navigation in describing AD
because it captures the feel of the interface.

Partitioning The main idea of PRISAD is to partition the dataset
into screen-space regions of roughly equal size before drawing any
geometric objects. This partition computation involves a binary
search traversal of the split line hierarchy. It relies on the screen-
space positions of the grid lines, and thus must be recomputed each
time that any navigation action occurs. After partitioning, the re-
sulting screen-space regions are either smaller than a target size, or
contain only one geometric object to draw. Each region is bounded
by split lines, so partitioning returns a list of split line ranges. Fig-
ure 8a shows the PRITree partitioning of the leaf set {1,2,3,4,5}
into the queue of ranges, {[1,2], [3,4], [5]}. The segmentation is
based only on the position of the tree leaves with respect to vertical
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Figure 8: Screen-space rendering for trees. The lines to the right of
the tree demarcate screen-space regions, and navigation will change
which objects fall into them.

screen-space regions. This example illustrates that the partitioning
does not need to match the hierarchical structure of the topological
tree: the subtree with leaves 4 and 5 is split across multiple ranges,
and the [3,4] split line range contains leaves from multiple topolog-
ical subtrees.

An application developer must determine which of the two hier-
archy directions to partition for the rendering phase. With PRITree,
we observe that the dense structure of topological leaves in the ver-
tical direction is ideal for culling, whereas the horizontal direction
lacks uniform, traversable structure; thus, we partition so that the
primary rendering direction is horizontal. In contrast, for PRISeq
the primary rendering direction is vertical. Many nucleotides in a
column are expected to be identical, because the rows of multiple
gene sequences are aligned. We exploit this property to save time
and space by run-length encoding in the vertical direction, as de-
scribed in the PRISeq section.

Seeding and Progressive Rendering The output from the parti-
tion stage is a list of ranges. The seeding stage allows applications
to transform that list into a queue, specifying the order in which to
draw items when progressive rendering support is enabled. With
datasets small enough to render quickly, the entire scene can be
drawn in a single frame and drawing order is irrelevant, applica-
tions can disable progressive rendering. The dotted line in Figure 4
represents this pass-through case. However, the PRISAD infras-
tructure offers support for guaranteed frame rate rendering to en-
sure that each frame finishes within a bounded amount of time, with
rendering spread across multiple frames. In this case, drawing or-
der is visible to the user and the application can impose its own
semantics. For example, to ensure visibility of landmarks during
animated transitions of datasets, we render a representative object
for each marked region first in PRITree and PRISeq, and we also
move objects selected by the user for resizing to the front of the ren-
der queue. For example, if the subtree containing the leaves [4,5]
is marked as in Figure 8b, we would reorder the partition queue P
as {[3,4], [5], [1,2]} since the marked leaves of 4 and 5 should be
drawn before the other unmarked leaves.

Even if progressive rendering is unnecessary, seeding is still
required to ensure that drawings are correct to avoid overculling
marked regions. Seeding prevents the rendering errors shown in
Figure 2. Our sections on marking for PRITree and PRISeq de-
scribe how marked areas are enqueued in the PRITree and PRISeq

seeding phases, respectively, to ensure guaranteed visibility.
Drawing In the drawing phase, one geometric object from each

enqueued object range is drawn. For trees, one leaf node is se-
lected from each range, and the full or partial path from the leaf up
towards the root is drawn. Figure 8c shows the effect of drawing
from leaf 4 to the root as a thick line along the path. For sequences,
aggregation in the horizontal directions occurs as needed to create a
representative box for a range, and the entire column is drawn with
the minimal number of boxes using run-length encoding. The fol-
lowing sections describe application-specific drawing approaches
in more detail.

PRITREE

In the previous section, we discussed the generic infrastructure for
world-space discretization and screen-space rendering, including
examples of PRITree. In this section, we discuss more details of
tree traversal for rendering, creation and traversal of data structures
for guaranteed visibility of marked groups, and support for effi-
ciently picking geometric objects near the cursor.

Rendering: Leaf Selection
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Figure 9: Left: Each partitioned range of leaves in P = {[A], [B], [C,E]}
must render only one path from some leaf in its range to the root;
we only draw tree edges marked in dark grey and always render the
leaf paths in ranges with a single leaf. Sub-pixel partitions are shown
as alternating colored regions. When deciding on a leaf in [C,E], we
must choose either D or E, or else the internal node b would not be
rendered. Right: Our selection traversal processes paths from the
shaded partition to all subtrees with leaves in that range larger than
τ . The black edges represent traversal paths and dark grey edges
stop the traversal from processing subtrees of extent larger than τ .

In the drawing phase, the application is given a split line range,
and must determine which geometric object to draw from the set of
objects attached to those grid lines. For trees, the choice is which
leaf to select, and the path from that leaf up to the root is drawn. The
path drawing can safely terminate early when a path segment that
has already been drawn is encountered. The selection of the leaf for
each range is the most important run-time decision for our drawing
algorithm. A poor leaf choice would lead to incorrect overculling,
where a misleading gap appears in the drawing. Figure 9 Left shows
three ranges, with the selected leaves and their upward paths drawn
in dark grey and culled objects in black. In this example, note that
selecting leaf C could lead to a visible gap because the interior edge
b would not be drawn.

Selecting a safe leaf from a range requires traversing the topo-
logical tree dataset and using the split lines associated with topo-
logical tree edges to quickly determine screen-space distances. Our
leaf selection algorithm terminates after at most two partial upward
traversals from a leaf toward the root. We ascend from the first leaf
in the range until we find an internal node whose vertical edge is
larger than the screen-space extent of the partition. We then jump
to the first leaf in the next subtree over, and if we are still within



the partition we again ascend until we find an edge larger than the
partition size. We choose the leaf belonging to the leftmost of these
two candidate edges.

Working through the example shown in Figure 9 Right for the
range [Ls,Lk] illustrates why this algorithm works. We denote the
maximum vertical screen-space extent of a partition as τ , shown as
the green filled-in area; Appendix A presents a detailed justification
for setting τ to one-quarter of a pixel. Our selection traversal starts
at the first leaf node Ls in the range. We ascend to the ancestors of
Ls until we find the first internal node larger than τ , which is A; the
size of A is the sum of the sizes of leaves under A. It follows that the
size of B, the child of A on the path to Ls, is not as large as τ , so we
know that we can draw the subtree under B as line of a single pixel.
One point of caution about rendering B as a single pixel width line:
if the path under B to Ls crosses between two pixels, a jagged line
will be displayed. In Appendix , we show that these jagged lines
do not matter with τ smaller than one-quarter pixel, and how such
paths cause gaps in TreeJuxtaposer rendering. We will draw the
leaf path from the starting node Ls if no other subtree that is larger
than τ can be drawn by drawing a path from Ls to B.

We locate the next leaf to ascend, Li+1, by finding the node adja-
cent to Li, the maximum leaf under A; our mapping process gives us
O(1) lookup time for Li+1 following the ordering of leaves mapped
to split lines. Lookup of Li from A is also O(1) since subtrees keep
references to their minimum and maximum leaves. Our algorithm
continues by ascending from Li+1 because this leaf is still in the
range [Ls, Lk]. Similar to finding B, the ascent finds C to be the up-
permost node not as large as τ . However, the pixel-high path from
Li+1 to C would be shorter than the path from Ls to B, so we keep
Ls as the representative leaf rather than switching to Li+1. Finally,
the maximum leaf under the parent of C is outside the range [Ls,
Lk], so our algorithm terminates, choosing to draw the path from Ls
to the root; in fact, any leaf in [Ls, Li] is a good choice.

By using τ in our ascent termination criterion, we limit the num-
ber of necessary ascents to at most two per leaf range. A subtree
larger than τ would exit the leaf range on at least one of the two
possible sides of the range. Leaf selection, and thus drawing, is
linear in the number of partitions; that is, in the number of vertical
pixels.

Our leaf selection algorithm has many possible safe choices for
representative leaves, so we have no guarantees that leaves corre-
sponding to a marked group will be chosen. We explicitly seed the
queue with ranges of marked objects to ensure guaranteed visibility,
as we describe next.

Marked Groups

In PRISAD, marked groups are sets of geometric items that should
be drawn in a specified color. These groups might contain com-
puted differences, or user selections. Each tree node has a unique
key in our topological structure. Keys are assigned by a pre-order
traversal, so every complete subtree of the topology is a single, con-
tinuous range of keys, with the root node key smaller than all other
keys, as shown on the tree layout in Figure 6a. For each marked
group, we store the ranges in a binary search tree structure, which
allows us to search the list of all marks for any node in O(log r)
time, for r marked ranges. Instead of storing every individual node
in the search tree, we store ranges of marked nodes, and concatenate
any adjacent marked node ranges if possible. This look-up is much
more efficient than the O(rn) cost of TreeJuxtaposer, where n is
the number nodes of the dataset. Although TreeJuxtaposer cached
the last computed group after each marking action, Figure 16 shows
that the cost of color look-up before caching is very slow in a worst-
case marking situation.

To provide visual landmarks during animated transitions, our
progressive rendering algorithm draws a skeleton representing

Figure 10: Left: A fully rendered tree scene with several colored
marks. Right: The skeleton view of the same tree, with each marked
group represented as a path from node to root.

marked groups before drawing the rest of the scene. TreeJuxtaposer
also renders marked groups before unmarked objects, but there is
no guarantee of finishing in one frame if the marked regions con-
tain large ranges. Unlike TreeJuxtaposer, PRITree progressive ren-
dering only draws a single leaf path from any leaf in the marked
range to the root, for each marked range. This sparse marking, as
shown in Figure 10, draws enough of each range to quickly por-
tray a useful skeleton of marks at low cost, and also guarantees that
sub-pixel width subtrees are not culled out of the scene. The time
to render a skeletal path is O(h) for a subtree of height h, which is
usually at most O(log(n)), versus O(n) for a subtree containing n
nodes. With this improvement, we also render skeletal paths for all
marked groups in the first frame.

Picking

Picking is the inverse problem from rendering, namely going from
a screen-space region representing a cursor picking area to a geo-
metric object. Just as with rendering, providing realtime respon-
siveness becomes more difficult as dataset size grows. Many of
the tree edges in PRITree are skinny, so the the well-known Fitts’
Law [7] effect holds that small targets can be irritatingly difficult to
select. The obvious solution is allowing a small picking fuzz re-
gion around objects to be considered as a hit. However, fuzz alone
is not sufficient: backtracking is a robust solution to the problem.
The quadtree-based picking of TreeJuxtaposer and TJC-Q did not
support backtracking, and picking could fail in sparse regions when
a quadtree cell was empty, even though an adjacent cell within the
picking fuzz region had a pickable tree node

PRITree picking is a descent-based technique with backtracking,
described in pseudocode in Figure 11. We find a child node, Nk, of
some tree node N, that is enough within the picking fuzz of the cur-
sor, M, and store adjacent sibling tree nodes, Nk−1 and Nk+1, for
later backtracking if we choose the wrong child node. When we do
not find a tree node with our choice in the path, we begin using the
contents of the stack. Since our PRITree layout technique fills the
entire grid, such that subtree roots cover the extent of their leaves in
the direction of SY , our style of picking does not rely on descending
the exact subtree that is above M. We may be “off-by-one” in either
direction safely, because if a backtrack is necessary, the only pos-
sible subtree to examine would be the one geometrically adjacent
subtree in the SY direction.

This method works just as well as other descent methods when
regions are dense, because we can guarantee to find a close enough
node anywhere within the picking fuzz range in a dense region,
and we approach M the further we descend in the hierarchy. An
example of a sparse case where backtracking is necessary is when
a very narrow subtree is adjacent to a very wide subtree. In this
case, the narrow subtree is hard to pick, so most often a picking



Picking Function
input: mouse screen position M = (X ,Y )

root TreeNode T = (kids,cell) where
kids = {T0,T1, . . . ,Tn−1}
cell = (Xmin,Xmax,Ymin,Ymax)

output: picked TreeNode T(X ,Y ), a node close to (X ,Y )

stack S← /0
S.push T
while S 6= /0

N← S.pop
if (X ,Y ) over edge of N

return N // return N
xMin← N.cell.Xmin
if N.isLea f () or N.cell.bounds(Y ) or xMin > X

continue // throw away N
k← BinarySearch( N.kids, Y )
if k > 0

S.push Nk−1
if k < n−1

S.push Nk+1
S.push Nk

end while
return /0 // no node picked

Figure 11: PRITree Picking: descend tree under node T until a tree
node close to mouse coordinates (X ,Y ) is found. Stack S is used for
backtracking if a descent is unable to find a tree edge; at each step
of the descent, two siblings of Nk, the next node to be checked, are
pushed onto S. All screen-space distance functions: BinarySearch;
N.cell.bounds(Y ); M over edge of N, apply a picking fuzz.

algorithm may select the wide subtree and give up even when the
cursor is very close to the narrow subtree.

When the cursor is in a wide subtree, but is too far to pick any
node in that subtree, we know that the cursor must be vertically
between some node in the subtree and one of the siblings of the
subtree. The sibling of the subtree that is vertically opposite the
cursor is not pickable, so we know that for any backtracked de-
scent, at most one sibling that we cache in the stack is useful. Also,
when backtracking, we know that we will backtrack to exactly the
appropriate sibling we need to find the cursor. This is true because a
backtrack means that the cursor is vertically further than the picking
fuzz away from the edges of the subtree that define the bounds of its
drawn tree edges. Only ascending to the node that bounds the cursor
on the opposite side will continue the picking descent. Therefore,
although our algorithm always caches both siblings, when possi-
ble, we follow at most two paths in the entire tree if the cursor is
in regions where nodes are sparse; it is cheaper to cache first, and
determine if the siblings are appropriate later.

Our overall complexity depends on the branching factors of
the nodes involved, since a binary search is required at a cost of
O(log c), where c is the maximum branching factor. For paths
that descend into dense regions, we incur the costs of traversing
the height of our tree, which is O(H), for a tree of maximum height
H. Therefore, our overall picking complexity is O(H ∗ log c).

PRISEQ

The PRISeq partitioning exploits the probability of vertical coher-
ence in a column of nucleotides, as discussed in the section on
PRISAD screen space rendering. Our goal is a rendering algorithm
with complexity that depends on the number of pixels as opposed
to the dataset size. In PRITree, culling occurs in only one direc-

tion: leaves are culled, and the drawing strategy hinges on culling
by careful selection along a leaf path. In PRISeq, we need to cull in
both directions. We aggregate information about the entire region
encompassed by a split line to draw a representative object for it.
These representatives are computed at most once, by caching the
results of lazy evaluation.

Rendering: Column Aggregation

We aggregate across multiple columns according to the split line
hierarchy. Recall that split lines encompass regions of space, with
lines higher in the hierarchy subtending larger regions, and that
the partitioning respects this hierarchical structure. SequenceJux-
taposer selects a nucleotide in a region at random for every frame,
giving a misleading visual indicator of nucleotide density and caus-
ing flicker during transitions due to the lack of frame-to-frame co-
herence. Since the sequence layout introduced by SequenceJuxta-
poser uses filled rectangles in a packed grid, our partitioning stop-
ping criterion τ for PRISeq can be set to terminate partitioning
columns at one pixel resolution.

Our PRISeq representative object reflects the density of nu-
cleotides in the region in question; specifically, we find the most
frequently occurring nucleotide in the region and use its color.
Representatives are recursively computed and cached, so finding
a higher-level split line automatically populates the cache with its
descendants. We break ties with random selection from the candi-
date colors, but the true nucleotide counts are propagated upwards
so that the selection does not bias its ancestors, and so that the se-
lection persists across frames due to the caching. Figure 12 shows
a small example. After the representative objects are computed for
each row of an aggregate column, our previously described run-
length encoding strategy is used to minimize rendering time and
save storage space.

SeqA A A C C

k k+1 k+2 k+3

SeqB A C C C

SeqC G G C G

SeqA A C

SeqB A C

SeqC G G

[k, k+1] [k+2, k+3]

SeqA C

SeqB C

SeqC G

[k, k+3]

Figure 12: PRISeq recursively aggregates information for columns en-
compassed by split lines to determine which nucleotide color should
be used for the representative object. Left: No aggregation is per-
formed at the highest magnification since every nucleotide is visible.
Rendering column k+2 requires drawing only a single vertical rectan-
gle since C is in every sequence for that column. Center: For column
range [k, k +1], SeqB has a tie, so A is randomly chosen but the true
counts are propagated upwards. Right: When aggregating all four
columns, C is found to occur most frequently for SeqB.

Aggregating a single region encompassed by a split line has a
one time cost of O(r), where r is the number of nucleotides in the
range. We could precompute the aggregation for the entire split
line hierarchy in the mapping stage of world-space discretization,
in the empty step in Figure 7d, but we instead save time and space
by lazy evaluation that fills the mapping cache. The runtime cost
for drawing a frame where all aggregated columns are found in the
cache is O(h∗v) where h is the number of horizontal pixels and v is
the number of vertical pixels, because there are at most h columns,
drawing a column requires at most O(v) work, and cache lookup
time is constant. The number of sequences or nucleotides may far
exceed the number of vertical or horizontal pixels, but our aggre-
gation method for PRISeq renders only O(p) geometric objects in
O(p) time, where p is the number of on-screen pixels and p = h∗v.



Marked Groups

Similar to PRITree, marked groups in PRISeq are given seeding
priority over the rest of the dataset. Each partitioned region in
PRISeq that contains a marked item is drawn with an additional
colored rectangle across some vertical range of the culled area. Re-
gions that are horizontally adjacent are rendered with a continuous
marked area. We store each marked region type in PRITree as a
separate marking tree. The marking trees use a standard binary tree
library, and store continuous ranges of nucleotides that are marked
for that region type.

We enqueue marks in our rendering queue by processing our
marking trees in nucleotide, then sequence order. For each marked
nucleotide range, we find the culling regions that a mark belongs to,
which may be several nucleotides long, and several sequences high.
After we find the horizontal ranges for each mark, we determine if
any mark is adjacent to the last culling region, and append adjacent
regions until we find a marking discontinuity.

Our marked region drawing is much faster than rendering the
marks with the rest of the dataset, since we draw marks as contin-
uous rectangles of the same marking color. Since we cull marks in
both directions, we achieve O(h∗v) rendering time for h horizontal
and v vertical screen pixels. The search for marks itself depends on
the current marking state. Each marked range search takes O(log k)
time for k marked ranges, which indicates that total marked range
rendering is O(h∗v+k∗ log k), since we search each marked range
for a culled region. In practice, this upper bound is quite liberal:
we typically perform fewer than k searches, and would only draw
at most k marked ranges with a brute force approach. We chose our
method because it renders fewer geometric objects, and is capable
of rendering O(h∗ v) marks on with interactive frame rates.

Picking

The partitioning of nucleotides produces a screen-space division of
culled geometric objects in the horizontal direction. To assist in
picking visible on-screen objects, we also partition the vertical split
line component of PRISeq into ranges of sequences that subtend the
same pixel. By having a partitioned split line hierarchy in both di-
rections, PRISeq picking becomes a binary search for a small pick-
ing region around the cursor position in the horizontal and vertical
directions. Since our rendering process uses the same partitions to
determine what to draw for each rectangular culled range, we can
use the same descent operation for picking to ensure that what we
see is what we pick.

PRISAD PERFORMANCE

This section shows how our applications, PRITree and PRISeq
which use our generic AD infrastructure, compare with functionally
similar applications. Therefore, although we would like to compare
PRITree with the performance of TJC, which can render datasets
with three times the number of tree nodes as PRITree, we can only
assert how TJC would fare using our test datasets. It is worth men-
tioning that the performance of TJC on binary trees [4] is available,
but as we show in the following section on PRITree, using datasets
with different characteristics, especially real-world examples, may
not be as fast or as memory efficient.

PRITree vs. TreeJuxtaposer

In this section, we evaluate the performance of PRITree (PT) us-
ing TreeJuxtaposer (TJ) performance for identical actions as our
benchmark. All performance tests were performed using a 3.0 GHz
Pentium IV processor, Java 1.4.2 04-b05 HotSpot runtime environ-
ment with a maximum heap of 1.8 gigabytes, GL4Java v1.4 graph-
ics libraries, and an nVidia Quadro FX 3000 video chipset, running

twm in XFree86 version 4.3.99.902. The window size was set to
640 by 480 pixels, and timing results were output by millisecond-
accurate Java system functions, and averaged from several manu-
ally prompted redrawings of each tested dataset.

First, we compare the performance of both applications with
respect to rendering a series of synthetic and large, real-world
datasets. Our analysis of both total scene rendering time and mem-
ory consumption shows that we do not lose performance by switch-
ing from application-specific algorithms to the generic infrastruc-
ture of PRISAD; on the contrary, we achieve a speed-up. We then
investigate the worst-case marking performance on the comparison
of large datasets.

The space of all possible trees is vast and hard to classify. We use
two sequences of synthetic data that bound the degree of nodes: bal-
anced binary trees, and star trees: the bushiest possible trees where
all nodes but one are leaves, attached to a single root node. For
real-world datasets we chose two pairs of large comparable trees:
the InfoVis 2003 contest classification trees (IVC) [12], each with
over 190,000 nodes; and two Open Directory Project categoriza-
tion trees (ODP) [1], from March and June 2004, each with over
480,000 nodes.

Figure 13: Our real-world application performance testing datasets.
Top: Comparison of two InfoVis 2003 contest classification trees,
each with over 190,000 nodes. Bottom: Two OpenDirectory Project
categorization trees, each with over 480,000 nodes, with some marked
subtrees. There are over 30,000 differences between these two trees,
which makes this rendering very slow with differences enabled.



Results

The top of Figure 14 shows that both TJ and PT rendering time
performance on star trees is comparable with a small number of
nodes. Once the star trees include more leaves than available ver-
tical screen pixels, PT culls efficiency while TJ continues to render
the entire dataset. Star trees of 130,000 nodes take one second for
TJ to render, while any star tree larger than 4000 nodes renders
in 50 ms. TJ performs poorly with bushy trees, since when the
root node is larger than one pixel, TJ will draw all of its children.
PT quickly reaches a constant-time plateau with star trees, showing
that PRISAD has succeeded in setting strict limits in the number
of leaves to draw through partitioning: the number of leaves ren-
dered is at most four times the number of vertical pixels on screen.
Although the TJC system was not tested on this type of graph, the
rendering algorithm used means that it is likely to exhibit similar
poor behavior for the star tree case as TJ.

The center of Figure 14 shows again that rendering time perfor-
mance is identical between PT and TJ until graphs of larger than
4000 are rendered. The performance of binary trees in PT becomes
sub-linear after a threshold number of nodes. Again, when PT ren-
ders datasets with four times the number of leaves as vertical pixels,
it only renders that many more nodes for every doubling in size of
the balanced binary trees. This progression of drawing a constant
number of leaves more for every doubling in dataset size is exactly
the graph of O(log n), for trees with n nodes. The graph does
not remain linear in the semi-log plot due to the increased height
of traversal necessary to find the first large subtree from each leaf
during the rendering traversal. A more favorable dataset for PT
would have a larger branching factor to reduce that depth of traver-
sal. Also, note that the TJ trendline has some peculiar features: the
rendering time for a binary tree of 262,143 nodes is faster than a
tree of less than half its size. This downturn illustrates the over-
culling problem in TJ, where large binary trees are incorrectly ren-
dered with gaps.

The bar graph on the bottom of Figure 14 shows how PT and TJ
react with real-world datasets, after the first scene has been drawn.
IVC includes many high-degree internal nodes, and the slow per-
formance of TJ during the contest comparison is primarily related
to the overdrawing of dense regions. PT is capable of rendering
a single IVC tree over five times faster than TJ. For IVC on both
applications, the rendering time appears to be approximately dou-
ble for tree comparisons. PT renders two ODP trees much slower
under comparison due to the very large number of differences be-
tween trees; there are 30,000 differences due a great number of
sparse leaf changes between the datasets, all of which are rendered
for guaranteed visibility. Since there are relatively few local differ-
ences, marked group look-up and rendering is not a huge cost for
IVC, when compared to ODP. It is also interesting to note that the
rendering time of TJ for IVC comparison is less than twice the ren-
dering time for a single IVC tree, which may be related to how TJ
caches marked nodes.

In Figure 15 top, we see that the binary and star trees series both
consume linear amounts of memory, but with different constants.
The PT memory performance comparison reveals that PT is easily
capable of loading star trees four times larger, or binary trees three
times larger, than TJ. In the bottom of Figure 15, we note that for the
contest comparison, PT is about five times as efficient as TJ. Also,
the footprint of PT from single trees to comparisons is very close to
double, while TJ consumes about four times the memory for com-
parisons of the IVC dataset. This means that since our methods
of storing marked nodes is the major difference between these two
applications once the grid layout methods are normalized, that our
PT marked node storage is far more efficient than methods used by
TJ. Considering the number of marked nodes in the ODP dataset
comparison that causes it to render very slowly, this is a surprising
result of the memory efficiency of PRITree.
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Figure 14: Top: Rendering times for PRITree and TreeJuxtaposer
with star trees. Both applications render efficiently until 4000 nodes,
after which PRITree remains constant and TreeJuxtaposer remains
linear. Center: Rendering times for PRITree and TreeJuxtaposer
with balanced binary trees. Applications diverge at 8000 nodes, where
PRITree becomes nearly logarithmic until 0.5 million nodes but is still
sublinear afterward, and TreeJuxtaposer begins to have rendering er-
rors and therefore inconsistent performance times. Bottom: Render-
ing times for PRITree and TreeJuxtaposer with real-world datasets.
PRITree is much faster even with the OpenDir dataset that has more
than double the nodes of the Contest dataset, but becomes very slow
with the OpenDir comparison with over 30,000 guaranteed visibility
marks. The rendering time for the first frame of a comparison is
ignored to allow TreeJuxtaposer to cache marks.

Finally, in Figure 16, we see that the performance of PRITree is
orders of magnitude faster than TreeJuxtaposer immediately after
marking. The first scene drawn after marking with TreeJuxtaposer
must recompute colors for each node in the topology, which re-
quires linear traversal through a list of all marked nodes. PRITree
does not cache marks for nodes, which gives slower post-marking
performance, but only a small one-time cost for computing the col-
ors for all nodes. By not caching the marks in PRITree, we decrease
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Figure 15: Top: The memory footprints of binary and star synthetic
datasets with PRITree and TreeJuxatposer. PRITree is four times
more efficient with star trees and three times more efficient with
binary trees. Bottom: Memory footprints of real world datasets, In-
foVis Contest and OpenDirectory, with PRITree and TreeJuxtaposer.
PRITree is three times more efficient with single trees and five times
more efficient with comparisons. TreeJuxtaposer could not load the
OpenDirectory dataset, so this efficiency analysis is conservative.

our memory footprint, leading to better scalability.

PRISeq vs. SequenceJuxtaposer

The result of using the PRISAD framework is order-of-magnitude
improvements in both time and space for PRISeq (PS) compared
to SequenceJuxtaposer (SJ). PS can handle datasets of 6400 se-
quences of 6400 nucleotides each, for a total of 40 million nu-
cleotides, which is a twenty-fold improvement over the 1.7 mil-
lion nucleotide limit of SJ. Rendering a dataset of 44 species with
17,000 nucleotides, for a total of 740,000 nucleotides, takes 7 sec-
onds with SJ [16]. PS can render the same dataset in less than one
half-second.

Action / Application TreeJuxtaposer PRITree
First Scene Unmarked 115 0.27
Subsequent Scenes Unmarked 1.5 0.27
First Scene Marked 130 2.5
Subsequent Scenes Marked 1.5 0.55

Figure 16: The marking time performance, in seconds, for a classifi-
cation tree from the InfoVis 2003 contest [12].

FUTURE WORK AND CONCLUSIONS

Many users have requested editing functionality for trees, which
would require modifying PRISAD to support dynamic rather than
static data. Adding internal logging capabilities to PRISAD would
also benefit users who wish to undo actions, replay their activi-
ties, or load a previously saved navigation state. Finally, we would
like to combine PRITree and PRISeq to allow biologists to explore
the interplay between genomic data and hypothesized evolutionary
trees.

We have presented PRISAD, a partitioned rendering infrastruc-
ture for scalable accordion drawing. Our infrastructure is the
first to provide a generic interface to the accordion drawing fea-
tures of rubber-sheet navigation and guaranteed visibility of marked
nodes. Additionally, PRISAD tightly bounds overdrawing with
pixel-based rendering constraints; all partitioning terminates at a
known pixel-based value and the application-specific algorithms
are prohibited from further partitioning. These constraints yield
bounded rendering time performance for several tree sizes and
topologies evaluated in comparison to TreeJuxtaposer performance.
PRITree and PRISeq are applications built on PRISAD that dupli-
cate the feature sets of TreeJuxtaposer and SequenceJuxtaposer, re-
spectively. A detailed comparison of PRITree and TreeJuxtaposer,
using the IVC dataset, shows an improvement of three to four times
more efficient memory usage, and five times faster rendering. Our
new data structures and algorithms for marking groups in PRITree
yield an order of magnitude speed increase. PRISeq provides order-
of-magnitude improvements for both rendering speed and mem-
ory usage. PRITree and PRISeq are open source and available for
source or binary download at http://olduvai.sf.net.
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APPENDIX PRITREE TRAVERSAL DETAILS

Leaf overculling

The primary focus of previous tree rendering applications, such as
TreeJuxtaposer and TJC, is to minimize the number of branches
drawn for a subtree beneath a node, rather than minimizing the
global number of nodes drawn. Attempts by these applications to
prevent overdrawing fail for some complex topologies, as demon-
strated by the evaluation of TreeJuxtaposer in Section . Overdraw-
ing between topologically partitioned components is the major in-
efficiency of top-down partitioning and rendering. Top-down ap-
proaches do not consider overlaps of adjacent topologies, which in
some datasets renders ten times the number of leaves than there are
vertical screen pixels.

Our PRITree rendering begins by drawing tree scenes starting
from the set of all leaf nodes, and then proceeding bottom-up, or
toward the root node. The leaf nodes are partitioned in a separate
process from the drawing algorithm, which simplifies the entire ren-
dering algorithm. We can partition and draw simple paths from the
leaves to the root provided that it is still possible to correctly ren-
der the entire scene, which means no visible differences from the
brute-force drawing of every node. In this section, we show that the
maximum size for partitioning leaf ranges, to prevent overculling at
the leaves and without exact pixel arithmetic, is half the width of a
pixel.

If τ , the maximum partition size of leaf ranges, is set to one
pixel, then we may underdraw nodes at the leaf level, which then
propagates rendering errors to nodes higher in the topology. When
both adjacent leaf ranges draw outside of a shared pixel, as shown
in Figure 17, gaps may appear in many places throughout the topol-
ogy. One solution to this problem would be to perform exact pixel
arithmetic to ensure each dense leaf region is subdivided until every
leaf range is contained within some pixel.

Our solution, which does not use exact pixel arithmetic, guaran-
tees rendering in every pixel for leaf ranges by using τ of smaller
than one-half pixel. As shown in Figure 18, a smaller τ guaran-
tees rendering into each pixel in the set of all leaves. However, this
is only a solution for complete rendering of dense regions of leaf
nodes; the complexities of bottom-up rendering are discussed next.
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Figure 17: If τ is too large, then rendering gaps are visible throughout
the tree topology. The adjacent leaf ranges Lk and Lk+1 render a
single leaf, which may be in pixels adjacent to pixel row Rm, rather
than in row Rn itself which would be left blank.
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Figure 18: Restricting τ to less than one-half pixel prevents gaps in
rendering the set of leaves at the expense of overdrawing. Other
gaps in rendering are also prevented by our tree traversal.

Hierarchical overculling

After AD partitions the split line hierarchy to form a set of consec-
utive, non-overlapping leaf ranges, PRITree rendering draws one
leaf path per leaf range. The leaf path consists of every ancestor,
along the path to the root, of one carefully selected leaf in each
range. Selecting the wrong leaf will result in drawing errors, which
we refer to as hierarchical overculling. Unlike leaf overculling, we
may notice these drawing errors in sparsely populated regions of
leaf nodes.

Consider a path of tree nodes, P, drawn from a leaf toward the
root, which is entirely contained in a given pixel row. P may be
culled and not drawn if another path of nodes, Q, from the same
leaf range, may be drawn over the entire length of P. If both P and
Q terminate at a common node, R, in the topology, then the subtree
of nodes under R between P and Q can be culled to the same path
on-screen path; this logic is similar to the subtree culling arguments
used in TJC [4].

The more difficult case occurs when P and Q do not terminate
at the same node. To determine which of P or Q is the better for
rendering, we must traverse, as described in Section , to find the
longest of these two paths. The termination criteria of the subtree
width for P and Q, which we call ψ , is at least as large as τ in order
to guarantee a strict bound of two ascents per leaf range. However,
if we also apply the restriction that the sum of τ and ψ is less than
one-half pixel, then we may use a similar argument from the previ-
ous section that filled all rendering gaps in the range of all leaves.
Consider the following equations, where p is the with of a pixel:

ψ ≥ τ → ψ− τ ≥ 0 (1)



τ +ψ < p/2 → p/2− τ −ψ > 0 (2)
p/2−2τ > 0 → τ < p/4 (3)

maximize τ → τ = p/4→ ψ > p/4 (4)

where (3) is the addition of our restrictions, (1) and (2). Since we
also want to minimize the number of partitions, we maximize the
size of τ to give us (4). This final solution tells us that with our re-
strictions, we have optimal solutions of τ and ψ , which means that
we render up to four times the number of leaves as there are verti-
cal pixels on-screen and each leaf range tree ascent requires at most
two traversals. The advantage of this result is that we do not have
to perform exact pixel arithmetic on adjacent subtrees, which would
become costly for complicated tree datasets. Instead, we have a ren-
dering result that depends only on the number of on-screen pixels,
which reduces the cost of rendering complex and dense datasets.


