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Abstract
We introduce an algorithm and representation for fabricating 3D shape abstractions using mutually intersecting
planar cut-outs. The planes have prefabricated slits at their intersections and are assembled by sliding them to-
gether. Often such abstractions are used as a sculptural art form or in architecture and are colloquially called
’cardboard sculptures’. Based on an analysis of construction rules, we propose an extended binary space par-
titioning tree as an efficient representation of such cardboard models which allows us to quickly evaluate the
feasibility of newly added planar elements. The complexity of insertion order quickly increases with the number of
planar elements and manual analysis becomes intractable. We provide tools for generating cardboard sculptures
with guaranteed constructibility. In combination with a simple optimization and sampling strategy for new ele-
ments, planar shape abstraction models can be designed by iteratively adding elements. As an output, we obtain
a fabrication plan that can be printed or sent to a laser cutter. We demonstrate the complete process by designing
and fabricating cardboard models of various well-known 3D shapes.

1. Introduction

We present data structures and algorithms for the generation
of cardboard sculptures: given as input the surface of a 3D
object, we obtain a set of planar elements that approximates
the object and can be physically fabricated by sliding each
of the planes onto one another. Among many non-trivial as-
pects in this construction process we focus particularly on
the difficult combinatorial problems resulting from respect-
ing the physical fabrication of the model.

We show that only a small subset of all planar shape ab-
stractions is constructible (see section 4). Furthermore, the
slice insertion order and direction, which have a exponential

combinatorial complexity, significantly influence the visual
quality of the figure. As we show in the results section, a
random order of planes is far from optimal due to required
clipping of colliding parts.

Already the problem of finding good planes, regardless
of whether the planes lead to a constructible model, is diffi-
cult. Automatically finding an optimal set of planes covering
all important geometric features is challenging, as geometric
cover problems are known to be NP-hard [Hoc97]. Address-
ing this problem, related work has suggested optimization
heuristics [DDSD03], or very recently an approach that pro-
gressively selects planes to maximize feature coverage based
on principles inferred from a user study [MSM11].
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Figure 1: (Left to right) Abstraction of 3D models as
cardboard cutout c©MOMA, H-Construction is a ’Slide-
Together’ geometric construction by George W. Hart
c©George W. Hart, cardboard model by MUJI c©MUJI.

Our work is motivated by an increasing demand of real-
world prototypes for visualization. While rapid prototyping
technologies such as 3D printers can be used to fabricate re-
alistic replicas, they are expensive, and the process is slow
(printing time in the order of hours). In contrast, our pro-
posed method allows fabricating 3D shape approximations
fast and easily, and only requires equipment that is available
in every office. Notably, while we share the goal of creating
papercraft models from meshes, our approach significantly
differs from related work that unfolds the surface [MS04] or
tries to minimize the surface distance between 3D object and
abstraction [MGE06,STL06]. In this sense, we trade realism
with abstraction and fabrication complexity.

Based on an analysis of construction rules, we propose an
extended binary space partitioning (BSP) tree that addition-
ally includes the insertion direction of planes, as an efficient
representation of such models. This data structure allows to
evaluate the feasibility of newly added planar elements at
any time in the insertion process. As an input, we start with
a closed surface mesh of an arbitrary 3D object. In combi-
nation with a simple optimization and sampling strategy for
new elements, planar shape abstraction models are designed
by iteratively adding elements. As an output, we obtain a
fabrication plan that can be printed or sent to a cutting de-
vice, such as a cut plotter or laser cutter. We demonstrate
the complete process by designing and fabricating cardboard
models of various well-known 3D shapes.

The contributions of our research can be summarized as
follows:

• We introduce a novel representation for cardboard mod-
els based on an extended binary space partitioning data
structure.

• We propose a set of construction rules that respect physi-
cal constraints and guarantee that every piece can be slide
onto the current construction.

• We present an automatic pipeline to generate constructible
piece-wise planar shape abstractions and demonstrate its
functionality with a variety of 3D models.

2. Related Work

Computer graphics and related fields have extensively stud-
ied processes for computing efficient shape representations
and simplifications. Our work is most closely related to com-
putational paper architecture and methods that try to approx-
imate surface patches with a low number of simple primi-
tives. For a general survey on mesh simplification techniques
we refer to [LRC∗02].

Abstraction and Shape Decomposition is often used
as a method for effective visual communication. Mi et
al. [MDS09] propose a part-based representation and
method for decomposing a 2D shape into a few simple parts
that reveal important features. DeCarlo and Stone [DS10]
show that the abstract shape is understood in the same way
as the detailed one and shares a common visual explana-
tion for the important features. This concept was extended to
the idea of an exoskeleton as an abstraction of shapes [dG-
GDV10]. The exoskeleton as the external shell is a combi-
nation of geometry and perceptual approximations that re-
sult in a set of disk-like patches. In the same spirit, Mehra
et al. [MZL∗09] extract only the characteristic curves of 3D
man-made shapes to provide a compact and representative
version of the models. Pushing the level of abstraction even
further, Decoret et al. [DDSD03] suggest billboard clouds
as an extremely simplified but still powerful representation
for 3D objects. Similar to our approach in this work, planes
are used as basic primitives, but are treated as an unstruc-
tured set and benefit from image-based impostors. Recently,
McCrae et al. [MSM11] proposed a powerful approach for
generating shape-proxies consisting of planar sections based
on principles inferred from user studies. Although the gener-
ation of paper puppets as an potential application is shown,
there is no guarantee that the computed shape-proxies are
physically constructible only by sliding slices. In general,
common to all of these methods is their ability to efficiently
represent shape with simple primitives. However, these rep-
resentations are not developed and directly suited for physi-
cal construction. As demonstrated in the results section, our
approach can be applied in combination with various sam-
pling strategies for planar sections and therefore can be seen
orthogonal to these methods.

Computational Models for constructing and designing
papercrafts received attention in the computer graphics com-
munity. Existing methods can be classified by the type of
basic elements used for fabrication. For example e.g. Li et
al. [LYMS07] have shown that models can be augmented
with papercut patterns to support the perception of texture.
In contrast, we will focus in the following on approaches that
address forming 3D shapes.

Origami. Papercrafting in art has a long history and dates
back nearly 2000 years to the invention of paper. Origami,
the art of paper folding, creates intricate structures from a
flat piece without cutting or gluing. An overview and in-
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Figure 2: Overview of the construction process. Our pipeline starts with an input mesh. We then perform a preprocessing step
which generates a set of polygons that are added iteratively to the cardboard model. By inserting the polygon into our data
structure, we split the polygon into individual pieces and efficiently test if those can be physically slid into the cardboard model.
If successful the process is finalized by exporting the 2D fabrication plan.

troduction to mathematical folding algorithms can be found
in [DO07].

Decomposition into strips. There are several methods that
approximate a 3D object with a set of paper strips that can
be folded and glued. Mitani and Hiromasa [MS04] segment
the input mesh and represent it with a set of strips that
can be crafted by bending the paper which also allows to
represent smooth features. [MGE06] use a set of devel-
opable surfaces each one being a generalized cylinder rep-
resented as a strip of triangles. [STL06] follow a similar
approach but restrict their elements to cones and planes. In
theory, directly cutting and unfolding a polygonal mesh is
trivial, but the large number of resulting segments and tri-
angles make this approach impractical for fabrication un-
less used in combination with geometry simplification tech-
niques [CSAD04,SS10]. In general, all these methods try to
minimize the error between the original mesh and the ab-
stracted papercraft model.

Pop-up design. This area investigates the creation of pa-
per models from planar paper layouts that can be popped-up
in a rigid and stable manner. Recently, Li et al. [LSH∗10]
presented an algorithm for computing paper architecture.
The shape of buildings is approximated as a set of parallel
planes. Another interesting class are v-style pop-ups, which
can be opened and closed, i.e. moved into a flat state, without
changing the rigidity of the structure or extra force except
at two patches. These pop ups can be automatically gener-
ated [MS03, LJGH11] and are used for books or card de-
sign [Gla02]. While pop-ups are inherently intriguing and
mathematically interesting, fabrication might require gluing
and the assembly complexity of such models is higher com-
pared to our approach of sliding parts.

Fabrication. Investigating the aspects of intuitive sketch-
ing and design, [SLMI11, LIMS10] present innovative sys-
tems for furniture design and fabrication. In theory, our
representation and approach could be combined with such
sketching tools. Notably, Xin et al. [XLF∗11] propose a
system to decompose a 3D shape into several interlock-
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Figure 3: We define p j as the pivot polygon of p and ~d as the
pivot direction with the pivot point c. Sq and Sp define the
extracted tiles in the output fabrication plan. We assign each
tile an id and annotate each slit with the id that is connected
to the slit.

ing parts, allowing to automatically generating burr puzzles.
Horoyd et al. [HBLM11] fabricate multilayer models: a par-
allel stack of 2D images embedded within a semi-transparent
medium. In the wider context, computer graphics recently
presented several methods for fabricating real-world ob-
jects with custom properties. These address the appearance,
for example by fabricating microgeometry for surface re-
flectance [WPMR09], printing BRDFs [MAG∗09], or physi-
cally reproducing subsurface scattering [HFM∗10,DWP∗10]
and deformation behavior [BBO∗10]. In this spirit, our work
extends the set of digital fabrication possibilities, and pro-
vides a low-cost alternative to 3D printing.

3. Overview

Given the surface of a connected component in R3 as input,
our goal is to create a cardboard model abstraction that is
physically constructible.

The output is a set of n planar polygons p = {p1, ..., pn}
including intersection slits. The process is illustrated in Fig-
ure 2.

Our design process iteratively generates planar polygons
p by intersecting a plane against the input object and already

c© 2012 The Author(s)
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existing polygons. To define the cardboard model, we spec-
ify for each polygon pi, i = 2, ...,n an already existing poly-
gon p j, j < i to which it is connected to (see Figure 2).

Physically inserting a polygon p from a specific direction
is only possible if the insertion path is not blocked. To repre-
sent our abstracted object at any time and allow for efficient
tests, we simplify the full insertion analysis to a straight line
path for the inserted plane. This allows us to perform all tests
based on a modified version of a BSP tree [FKN80].

Note that the full analysis of all possible insertion paths
would be significantly more complex algorithmically, and
also not lead to a similar elegant data structure. We are quite
sure that the number of cases in which a curved path for
insertion of elements would add something to a model are
very small.

Linking a polygon p with another polygon p j that is al-
ready part of the cardboard figure defines an intersection
segment between p and p j. Figure 3 shows p j as the pivot
polygon for p. In other words the pivot polygon is the poly-
gon we slide on. The polygon intersection segment defines a
pivot point c and a pivot direction ~d. This intersection seg-
ment defines the insertion slit on the polygons p and p j. In
addition to the data structure, we derive and analyze a set of
construction rules that go along with the development of a
cuttable layout as shown in Figure 3 and described in sec-
tions 4.3 and 4.5.

Our process starts with sampling a set of candidate poly-
gons for insertion. For each of these polygons, we check
the insertability and compute a quality measure that tries to
quantify the additional features which are covered by this
plane. Since the order of insertion is crucial for the outcome
we use a branch and bound strategy to determine the best
model. Finally, we generate the output layout, which can be
printed and cut manually, sent to a cutting plotter, or laser
cutter. We tested our pipeline on a large number of models.
A subset is shown in Figures 14 and 15.

Keep in mind, as cardboard models become more com-
plex, the insertion ordering cannot be trivially solved. A fully
area-preserving solution may not exist even for simple con-
structions (Figure 4). While in this example it is irrelevant
which part is dropped for symmetry reasons, in most real
world models the insertion order leads to significantly dif-
ferent outcomes, e.g. Figure 10.

4. Construction

Our input shape is a single connected component in R3 that
is true to scale of our desired constructible output. Consider a
current construction state as shown in Figure 2. When insert-
ing an additional polygon p to a cardboard sculpture, there
are three possible outcomes:

• The polygon p can be directly put on the pivot polygon
p j and any other polygon with an intersection segment

a

b
c

Figure 4: We show an insertion for a symmetric cardboard
construction. Note, that the consecutive plane cannot be in-
serted completely – part c is physically not insertable. Top
and bottom parts a and b of the plane can be inserted. Due
to symmetry this means that this construction cannot be re-
alized without losing parts of the planes.

parallel to the insertion direction ~d. There exists no poly-
gon blocking the insertion path, so p can be inserted com-
pletely.

• We insert p and there is at least one already existing poly-
gon that blocks the insertion path of p except the polygon
p j or any other polygon with an intersection segment par-
allel to ~d. We then split p in parts and insert the parts sep-
arately from the directions ~d and −~d. Our data structure
guides the splitting process.

• Polygon p is split, but at least one of the resulting planar
elements cannot be slit into the cardboard model due to
its shape as shown in Figure 7 or the resulting intersection
slits that would endanger the stability of the sculpture, as
described in Section 4.3 and 4.5.

In the following subsections we describe each of these
cases and our construction algorithm in more detail.

4.1. Preprocessing

We start our iterative construction process by selecting a
plane and generating flat polygons defined by the intersec-
tion curves of the plane with the original 3D model. Each
slice contains a set of connected components, of which each
is interpreted as an individual closed polygon p. The outline
contours and possible inner hole contours are triangulated.
The triangulated plane geometry is used for subsequent in-
tersection computations. Note, as we will describe later in
more detail, for all polygons (connected components) on a
plane we will test if they can be physically inserted. Only if
this is the case, we will consider them as potential candidates
for the cardboard model.

4.2. Cardboard Model Data Structure

Before we insert the polygon p into our data structure, we
decide on a pivot polygon p j with which we want to link to
p. With the choice of p j we compute the intersection seg-
ment between both polygons and identify its endpoints. The
endpoints define our pivot direction ~d and the pivot point c.

c© 2012 The Author(s)
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Figure 5: The BSP tree for the cardboard model on the right.
The nodes ni store its part of the polygon geometry and di-
vide the scene in half-spaces.

To maintain the cardboard model geometry we utilize a
data structure. It is based on a Binary Space Partitioning,
which we extend by modifying the insertion algorithm with
a set of additional rules. We want to restrict the insertion to
geometry that can be slid in safely until an existing plane is
blocking the insertion path. Note that this is different from
the standard version: in our version planes are not neces-
sarily inserted on both sides of each existing plane, but the
behavior rather depends on the type of node.

We also consider intersecting several existing polygons.
This is possible if the intersection segment with other planes
is parallel to the pivot insertion direction ~d of p.

Figure 5 illustrates the insertion process with the help of
a simple example. The insertion of geometry into a BSP is
done by recursively traversing the existing nodes n. We fol-
low the traversal path and add new tree nodes:

• in both half-spaces if node ni contains the pivot polygon or
if ~d is parallel to~e, where~e is the of intersection segment
with the polygon in ni. Since we want to attach on it we
can leave the polygon geometry as is.

• in both half-spaces if the new polygon is not intersecting
with the polygon in node ni.

• only in the half-space that contains c. So, only the geom-
etry in the half-space of the pivot point can be inserted.

We store c and ~d for each node n in the BSP. Furthermore
n holds a reference to the cardboard model polygon data type
and the part of the polygon representing the plane (see Fig-
ure 5).

The choice of the pivot polygon, the insertion order and
insertion direction change the resulting cardboard model sig-
nificantly because existing planes block parts in the shape
for consecutive planes which potentially leads to discarding
parts of these planes during insertion (see Figure 4). Finding
an optimal solution is very complex. Therefore we apply an
insertion order optimization described in Section 5. Figure 6
illustrates in a simple example the influence of the insertion
order and the choice of the pivot polygon.

We now have a correctly clipped planar element p. In
order to ensure that we can use p as a valid element for
our cardboard sculpture we need to check if the element is
castable.
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Figure 6: Insertion order makes a difference due to already
existing polygons. In red we highlight the last inserted plane,
in yellow we show its pivot polygon.
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Figure 7: Left: This polygon p is is castable with respect to
insertion direction ~d. Right: The yellow part of polygon p
indicates that it is not castable with respect to the insertion
direction ~d.

4.3. Castability of Planes

When inserting p into the BSP, it is clipped against other
planes that block the insertion path. This clipping process
generates a set of clipping points~ck. Polygon p can only be
physically moved in direction ~d when the signed distance of
all points~ck to the insertion direction is monotone along the
clipping path (see Figure 7). We note that while the values
of the distances may depend on the origin of the computa-
tion (e.g. the slit), their monotonicity just depends on the
direction. Consequently, we compute the projection vector
~ck − (~d ·~ck)~d of ~ck onto ~d and then take the cross product
with ~d to get a signed distance value:

~d× (~ck− (~d ·~ck)~d) = ~d×~ck (1)

We check that these values are monotone with the index k.

Figure 7 shows a valid and invalid clipping configuration.
The yellow triangle on the right figure indicates a part that
violates the condition, because the distance to ~d1 does not
decrease for the clipping points ~v2 and the subsequent ~v3.
We like to stress that casting is, unfortunately, a global con-
dition, in the following sense: if a polygon p cannot be in-
serted by moving it in direction ~d it could potentially cut any
other polygon in the model during the movement as well.
This means we cannot fix the problem just by local modifi-
cations, such as just cutting the interfering polygon q in the
clipping path as shown in Figure 7.

c© 2012 The Author(s)
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Figure 8: Left: Planar slice p through the curved ear of the
elephant model viewed from above. Middle: Resulting pla-
nar slice with point gathering a and without b. Right: Fabri-
cated result including the complete elephant ear.

4.4. Gathering Shape Features

So far, we defined the base elements of our cardboard sculp-
tures as planar and within the volume of the input object.
Therefore, abstractions of curved thin shells result in a large
number of elements. To compensate for a possible loss of
abstraction, we propose a more efficient representation by
gathering all surface points within a user specified distance
from the plane to account for the element thus allowing el-
ements outside the object volume. Intuitively, one can think
of it as the projection onto the plane. Figure 8 shows a fab-
ricated example where surface points are gathered for the
manually selected elephant ears to complete its geometry.

4.5. Fabrication Plan

In order to physically construct the cardboard model our al-
gorithm exports a printable 2D fabrication plan including cut
line annotations, as shown in Figure 3 and in the additional
material.

A cut line is the intersection slit between two polygons.
It is divided into two parts, resulting in a halfway-cut for
each intersecting polygon. In order to make sure that we can
fabricate the polygons with slits relative to the thickness of
the material it is important to obey a set of simple conditions:

• The intersection slit is not intersecting more than once
with the contour of polygon p. Otherwise the tile could
be disconnected.

• The slits need to have a minimum connection length with
the pivot polygon to support physical stability of the tile
and the resulting model.

We add additional annotations to provide step-by-step in-
structions for assembly of the cardboard sculpture. When
physically constructing the cardboard model by hand one
simply has to follow the linkage order. We refer the reader
to the additional material of the paper that includes a set of
fabrication plans.

5. Automatic Construction and Evaluation

Once the basic construction constraints are in place we need
to decide on the order of the construction. For a given set of
n planes there exists a large number of combinations to as-
semble the cardboard model. Specifically there is the plane

Figure 9: Given a new planar element we evaluate all pos-
sible insertions and sort the result by its projected area. We
use branch-and-bound and proceed our evaluation with the
best leaf models. This reduces the number of construction
possibilities drastically.

order permutation of n! and the insertion directions given a
specific plane order. Some of these combinations lead to the
same outcome even though their cardboard model tiles and
the order of insertions are different. In order to find an opti-
mal construction we propose a branch-and-bound approach
that utilizes a construction tree as shown in Figure 9 with
depth n to automatically construct a cardboard model.

From an aesthetic point of view it often is desirable to
construct the cardboard model with as much of the available
polygon area as possible. Therefore, we sort all planes by a
score value and start inserting them by the decreasing score
on each possible already existing polygon.

This leads to a number of intermediate cardboard mod-
els as nodes in the construction tree which we again sort
by their score. Depth-first search quickly provides useful
bounds and allows pruning of suboptimal solutions. Further-
more, we discard less significant intermediate construction
results working only with a set of k nodes for further in-
sertion. This reduces our combination space drastically. We
found that k ∈ [2,4] already gives good results even though
it is not guaranteed that this is the optimal solution. A set of
possible outcomes is shown in Figure 11 and Figure 12.

In practice, we found that planes close to the surface
are important for resembling the silhouette. In addition, we
therefore weight the plane’s area by its distance to the sur-
face, as shown in Figure 10.

6. Plane Selection

Selecting a set of representative planes is challenging be-
cause the visual quality of the resulting figure is dependent
on factors such as coverage of geometric features, human
perception, and visual aesthetics. In theory, our construction
method works in combination with any plane selection algo-
rithm. For our pipeline, we incorporated various sampling
strategies, including axis-aligned grid sampling, a simple

c© 2012 The Author(s)
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Figure 10: Axis-aligned plane sampling in an 8x8x8 grid. The order of insertion is determined by the decreasing score of the
plane. The score is a weighting of area and the polygons distance from the surface. Therewith we control the construction order
from inside to outside. If the score is equal for all polygons the insertion is random. It is noticeable that a construction starting
with the larger outer planes reconstructs the silhouette much better with nearly the same overall area.

random outcome
61.5%

92.6%

87.2%

100%

Figure 11: Given a set of planes a number possible outcomes
and its insertion area in percentage for a specific insertion
order is shown. The random outcome represents the median
of 100 random insertion orders. Dashed lines indicate parts
that could not be added because of a non-optimal insertion
order.

yet powerful automatic process to generate general planar
abstraction that supports visual regularity patterns, and the
option for manual plane selection. We also generate results
based on a sampling strategy learned from user data as re-
cently proposed by McCrae et al. [MSM11] as can be seen
in Figure 12.

6.1. Axis-aligned Grid Sampling

Given a number of equidistant planes, we sample the axis-
aligned bounding box for each axis of the 3D shape by
sweeping the planes through the model searching for the
largest overall cross section area. As this method does not
take into account any knowledge about the shape itself, it
usually requires a larger number of planes compared to more
sophisticated methods, but the resulting model look aesthet-
ically pleasing, compact, and regular. This approach works

Figure 12: Left, middle: Given a set of planes generated by
[MSM11] we apply our insertion strategy in an optimal (left)
and not optimal (right) construction case. Right: Cardboard
model [MSM11]

well for ’low-frequency’ objects as shown in Figure 14, but
for reproducing thin features, the number of required planes
makes construction impractical.

6.2. Plane Quality based Sampling

For an adaptive sampling strategy, we require a quality value
µ for each polygon in plane space Γ. We propose a measure
based on two importance factors - a measure of symmetry
and how well a polygon covers geometric shape features.
Both measures can be efficiently evaluated in image space
on the GPU (see Figure 13).

The distance symmetry term D ∈ [0,1] encodes the differ-
ence of distances from a point on the plane to its two pro-
jected points on the mesh along the plane normal in front
and back space of the plane with D = 1− (d f −db).

The surface symmetry term I ∈ [0,1] is a measure of corre-
spondence between the mesh surface normal~l and the plane
normal ~n. It is computed with 1− (~n f · ~l f )− (~nb ·~lb). We
would like to favor planes with normals oriented in its aver-
age surface direction. Figure 13 shows the resulting image
buffers for both terms over the polygon pi.

In order to compute the quality µ over the mesh surface
Ω for the polygon we define

µ =
∫

Ω

V · I ·D

c© 2012 The Author(s)
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Figure 13: Evaluating the quality of the plane. Evaluation
buffers: Distance in front and back of the plane, i.e. the
distance symmetry term D. Gouraud shading with the light
source pointing opposite to the plane normal results in the
surface symmetry term I. We sum over the resulting quality
map to compute our quality measure.

with V ∈ {0,1} as visibility term. During an iterative se-
lection of planes each plane covers geometric shape features
by its projected volume. The surface covered by the volume
is marked as invisible V = 0 for consecutive planes. It is
unity only for surface parts that are not yet visited and lie
in the projection of the polygon in the plane normal direc-
tion. Figure 13 shows the different results for D, I and the
quality result.

We represent potential polygons by the normal direction
~n and the offset o ∈ [0,b] to the origin, where b is the radius
of the 3D model bounding sphere. We uniformly sample the
directions for~n by choosing points on unit sphere using Saff
et al.’s [SK97] point distribution algorithm. We define our
plane space Γ for all samples each with a set of offsets.

Given the quality measure for each polygon, we evaluate
the set of planes of Γ and store our evaluated candidate poly-
gons in a priority queue. We greedily pick the polygon with
the highest measure µ and add it to a list of polygons for the
construction process. Since each new polygon p separates a
volumetric part of the shape, we mark this part as covered
over the mesh progressively with each p. As we are inter-
ested in planes that can be slid onto each other, we restrict
the sampling to attach only polygons that are nearly orthog-
onal to p j, e.g. np j ·np ≤ ε , with ε < 0.02.

We proceed with iteratively selecting planes until a the
mesh is completely covered or a maximum number of planes
is reached.

6.3. Manual Plane Selection

Choosing aesthetically pleasing planar elements for our ab-
straction is very subjective. An automatic process often does
not meet the standard of a user selection, especially when
the 3D model is filigree and has very distinct geometric fea-
tures that cannot be easily represented in a plane, or requires

a higher-level understanding of construction. Therefore, we
offer a very simple polygon insertion interface that allows to
edit the cardboard model within a few minutes and can be
used in combination with our automatic approach.

7. Results and Discussion

We tested our approach on numerous 3D objects and fabri-
cated several cardboard models. The fabricated objects con-
tain between 7 (Armadillo in Figure 15) and 48 (Stanford
Bunny in Figure 14) elements made out of standard paper,
cardboard, plywood or plastic and were manufactured using
an Epilog Zing Lasercutter within 5 minutes and were as-
sembled within 5 to 15 minutes. Side-by-side comparisons
of the input model and the real fabricated cardboard models
are shown in Figure 15 and 14 and the accompanying video.
We observed that even with a few polygons the shape of 3D
models can be approximated quite well. In fact, these mod-
els are extremely low-cost, only require printing and cutting
a layout, and could even be created by children. However,
our algorithm is not restricted to a low number of polygons,
although physical assembly becomes impractical at some
point.

For all automatically generated results shown in this pa-
per we either used a grid layout of up to 8x8x8 planes (see
Figure 14) or the plane quality evaluation or a combination
of both (see Figure 15). For the plane quality evaluation we
sampled the plane space approximately with 4000 normal
directions and 100 distance offsets. Evaluating the quality
of candidate polygons requires the majority of the compu-
tation time. For an input model complexity of about 100k
triangles, our single-threaded algorithm evaluates about 130
candidates per second, resulting in a total processing time of
about one hour on a MacPro using a GeForce GT 120 graph-
ics card. Using the axis-aligned grid sampling we generate a
cardboard model within seconds.

As shown in Figure 15, our approach for estimating the
plane quality is robust and effective. However, it does not
take into account higher level design goals or knowledge
about the object itself. We therefore also provide a simple
interface, allowing the user to indicate preferred samplings
as done for the elephant ears in the teaser.

Limitations and Future Work.

Currently, our plane quality estimation algorithm does
not incorporate high level information about the input ob-
ject such as salient features, symmetry, or texture. Although
finding a general quality estimation that respects the aesthet-
ics of the input and output object might be hard, for future
work one might consider combining our representation and
approach with work in symmetry detection and enhance-
ment [PMW∗08] or shape perception.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 14: We show the input meshes and the handcrafted cardboard models using axis-aligned grid sampling to find a set of
planes. The process for all models is automatic except for the gorilla where we added an additional plane manually.

Figure 15: Resulting cardboard sculptures created from a completely automatic two-step process. The first step finds to best
skeleton polygons using the plane quality evaluation. In the second step we additional sample axis-aligned planes. The Armadillo
is created only of skeleton polygons.

c© 2012 The Author(s)
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8. Conclusion

We have presented a novel algorithm and representation
for designing and fabricating cardboard sculptures from 3D
models. The core component of our pipeline is the efficient
construction and representation of such models which guar-
antees that they can be physically assembled. Fabricating
such models is extremely low-cost and simple. We therefore
think our method could be appealing to a large audience,
and might have impact in areas such as architecture and de-
sign where our approach could be an alternative to 3D print-
ing. Our method is a step towards low-cost but widely ap-
plicable shape abstraction and fabrication. We hope that our
representation and construction algorithm will inspire future
work in the area of geometry processing, optimization, and
perception.
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