
Optimal discrete slicing
MARC ALEXA
Technische Universität Berlin
and
KRISTIAN HILDEBRAND
Beuth Hochschule für Technik Berlin
and
SYLVAIN LEFEBVRE
INRIA

Slicing is the procedure necessary to prepare a shape for layered manufac-
turing. There are degrees of freedom in this process, such as the starting
point of the slicing sequence and the thickness of each slice. The choice
of these parameters influences the manufacturing process and its result: the
number of slices significantly affects the time needed for manufacturing,
while their thickness affects the error. Assuming a discrete setting, we mea-
sure the error as the number of voxels that are incorrectly assigned due to
slicing. We provide an algorithm that generates, for a given set of available
slice heights and a shape, a slicing that is provably optimal. By optimal we
mean that the algorithm generates sequences with minimal error for any
possible number of slices. The algorithm is fast and flexible, i.e. it can ac-
commodate a user driven importance modulation of the error function and
allows the interactive exploration of the desired quality/time tradeoff. We
demonstrate the practical importance of our optimization on several 3D-
printed results.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

General Terms: Algortihms

Additional Key Words and Phrases: computer numerical control, direct dig-
ital manufacturing, additive manufacturing, slicing, dynamic programming

Marc Alexa acknowledges an ERC Starting Grant (“XShape”, ERC-2010-
StG 259550). Sylvain Lefebvre acknowledges an ERC Starting Grant
(“Shapeforge”, StG-2012-307877) Authors’ addresses: M. Alexa, TU
Berlin, Sekretariat MAR 6-6, Marchstr. 23, 10587 Berlin, Germany; email:
marc.alexa@tu-berlin.de; K. Hildebrand, Beuth Hochschule Berlin, FB VI,
Luxemburger Str. 20a, 13353 Berlin, Germany; email: khildebrand@beuth-
hochschule.de; S. Lefebvre, LORIA/INRIA Lorraine, Campus scientifique,
615, rue du Jardin Botanique, 54600, Villers les Nancy, France; email: syl-
vain.lefebvre@inria.fr
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/17-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Layered Manufacturing requires a shape to be sliced. Together,
the layers approximate the object. Each layer has a non-negligible
thickness so that irrespective of the particular manufacturing tech-
nology used, slicing introduces an error – often referred to as “stair-
case” effect.

This error depends on exactly how the shape is sliced. Most lay-
ered manufacturing technologies offer variable slice thickness. Se-
lectively using thicker slices reduces the overall number of slices
in the production process and potentially saves time, while se-
lectively using thinner slices could lead to better accuracy [Do-
lenc and Mäkelä 1994; Sabourin et al. 1996; Kulkarni and Dutta
1996]. This better allocation of resources applies to many differ-
ent manufacturing technologies, including fused deposition model-
ing (FDM) [Tyberg and Bøhn 1999; Pandey et al. 2003a], stere-
olithography (SLA) [Xu et al. 1997], selective laser sintering
(SLS) [Singhal et al. 2008], and fully dense freeform fabrication
(FDFF) [Hayasi and Asiabanpour 2013]. It can also be used for
inkjet-based 3D printing processes (e.g., PolyJet/MultiJet) where
variable slice thickness can be achieved by modifying the droplet
volume.

In this setting we approach the problem of finding sequences of
slice heights that are optimal, in the sense of minimizing the error
for a given number of slices or minimizing the number of slices
for a bound on the error. A central assumption in our approach is
that the shape is represented on a discrete grid. This grid is used to
represent the shape, the slices, and compute the error — optimality
has to be understood in this setting. This approach is supported in
view of the mechanical nature of the output devices (we discuss
this further in the context of related work in Section 2 and present
the details of our setup in Section 3).

In this context, our central contributions are a data structure and
algorithms that enable computing the sequence of slice heights that
leads to the smallest total error for all possible number of slices.
This computation is divided into two phases: first, the error is com-
puted and minimized for each potential slice — in Section 4 we
explain how to perform this computation efficiently. Second, we
compute optimal sequences using dynamic programming parame-
terized over the number of slices, and also discuss how the same
approach could be used to solve related optimization problems (see
Section 5).

We experiment with this algorithm and potential alternative slic-
ing strategies. A theoretical analysis based on analyzing the volu-
metric error for different slicing sequences demonstrates that opti-
mal slicing is better than uniform or greedy adaptive slicing — and
also explains why other techniques fail. Moreover, relating slicing

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • Alexa, Hildebrand & Lefebvre

to sampling illustrates that any technique that makes local deci-
sions should be expected to provide non-optimal results, regardless
of how the error is measured. The theoretical analysis is presented
in Section 6.

The implementation of the algorithm shows that computations
can be performed for practically relevant data sets and parameters
in a few seconds on commodity hardware, thus not interfering with
the direct digital manufacturing pipeline. We use the resulting slice
sequences to generate control code for several recent manufactur-
ing devices, in particular FDM and stereolithography. We show on
several examples that, indeed, optimized slicing sequences can be
used to significantly decrease the production time at the same qual-
ity level, or get measurably higher accuracy in the same production
time (Section 7).

We argue that the error introduced by the slicing process can-
not be modeled in a way agnostic to the application and discuss
the properties of measuring the volumetric error in this context. We
suggest to adapt the error model to specific scenarios by weight-
ing, and illustrate how the user could change the slicing by paint-
ing a weight function onto the shape. We discuss further trade-offs
throughout the paper and present some open questions in Section 8.

2. RELATED WORK

Optimizing the parameters that control direct digital manufacturing
is a vast field, and we provide only a partial overview relevant to
our approach. Slicing is one of the central aspects for all layered
manufacturing techniques and various strategies have been sug-
gested [Pandey et al. 2003b]. The central theme of adaptive slicing
is a better trade-off between time to generate the result and applica-
tion specific quality of the result. The two most important aspects
of adaptive slicing are how to model the error resulting from slicing
and how to adjust the slice heights based on this error. Tangential to
slicing but relevant in the context of optimized digital manufactur-
ing are the aspects of decomposition of the shape and its orientation
relative to the device.

2.1 Error models

Given that there is a choice of how to slice the object, it is nat-
ural to minimize an error relative to the number of slices. There
exist different strategies to model the error, and any such strategy
necessarily is based on some assumption on the geometry of the
resulting slice. The majority of works assumes that the geometry
of a slice is a contour extruded orthogonal to the layer, i.e. every
slice has “vertical walls”. This assumption makes particular sense
for approaches that are supposed to be agnostic to the specific man-
ufacturing technology. From our experience, the assumption of ver-
tical walls is very realistic for SLS, and a good approximation for
FDFF and SLA. In FDM, layers are generated by strands of plas-
tic that have a rather round shape on the contour (and indeed this
shape has been taken into consideration to model the error specific
to FDM [Pandey et al. 2003a]). The consequence of these observa-
tions is that no single synthetic error model will be able to capture
the properties of artifacts manufactured on different devices.

Based on the assumption of vertical walls, most error mod-
els measure the so-called “stair-cases”. The standard is cusp
height [Dolenc and Mäkelä 1994; Sabourin et al. 1996; Tyberg and
Bøhn 1998; Xu et al. 1997]. It defines the local error as the dis-
tance from the surface of the input mesh to the connection point
of consecutive slices. It has been improved by using an adap-
tive error [Cormier et al. 2000] or modulated using computational
saliency models [Wang et al. 2015]. Another model with similar

properties takes the area difference of consecutive contour poly-
gons [Zhao and Luc 2000].

Consistent with other works on slicing [Tata et al. 1998; Masood
et al. 2000], we measure the error as the volume that is incorrectly
assigned: volume outside the shape that is covered by the sliced
shape, as well as volume inside the shape that is not covered by the
sliced shape. This would also allow considering contours that are
not vertical within each slice; we however leave this generalization
for future work. Note that the algorithm we develop for computing
the optimal sequence is agnostic to the error model and can be used
independent of how the error had been computed for each slice.

A central modeling assumption is that we consider the vol-
ume to be discretized. This is quite natural and widely adopted
(e.g. [Vidimče et al. 2013]) in the setting of physical realization: all
manufacturing processes have tolerances, and positioning is com-
monly done using stepper motors, whose step width or angle natu-
rally provides a discretization along the axes. Recent SLA printers
project digital images to cure the resin layer (e.g. Autodesk Ember,
B9Creator) and natively require a discrete input.

2.2 Adaptive slicing strategies

The simplest way to adapt the local slice height is by directly map-
ping the local error measure to the slice height [Dolenc and Mäkelä
1994]. This method suffers from the inability to control the result-
ing number of slices.

There are two main strategies for varying slice thickness that en-
able control over the number of slices. Fine-to-coarse approaches
start with the thinnest possible slicing configuration and merge con-
secutive slices depending on the error [Hayasi and Asiabanpour
2013]. Coarse-to-fine approaches have been preferred by many ear-
lier works [Sabourin et al. 1996; Tyberg and Bøhn 1999; Kulkarni
and Dutta 1996; Hope et al. 1997]. The main idea is to start with
a coarse slicing sequence and refine it by subdivision. All of these
techniques are essentially greedy – we demonstrate that they pro-
duce non-optimal results in Section 6.

A global approach to adaptive slicing has been introduced by
Wang et al. [2015]. They formulate the goal of slicing as finding the
smallest number of slices under the constraints of the slices having
bounded thickness and the overall error bounded from above [Wang
et al. 2015, Eq. 4]. As the slices may vary continuously within the
allowed interval, the solution to the optimization can only be ap-
proximated. Our main observation is that by discretizing the avail-
able slice heights, a globally optimal solution for the same general
problem becomes feasible. We slightly generalize the setting and
provide sequences of all possible lengths. This avoids picking a
bound on the error a priori. This more general solution is still sim-
pler and faster than the approximate solution for the continuous
setting.

2.3 Decomposition

Decomposing the shape can improve the manufacturing pro-
cess, for instance by restricting the parts to pyramids [Hu et al.
2014] avoiding overhangs and thereby support material. Wang et
al. [2015; 2016] directly target quality of the result by subdividing
the shape into parts which are treated differently to either reduce
manufacturing time but still maintain visual quality or optimize the
visual appearance by better adapting each piece to the manufac-
turing process. These approaches where inspired by earlier works
on local adaptive- [Tyberg and Bøhn 1998] and region-based slic-
ing [Mani et al. 1999; Sabourin et al. 1997]. All of them relax the
constraint that an entire layer should print with the same thickness,
thus allowing more resolution in some areas. Our approach could

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 3

work in conjunction with these techniques, for optimally slicing
sub-parts after partitioning.

2.4 Orientation

The manufactured result depends on the orientation of the shape
relative to the device. An important consideration for layered man-
ufacturing is structural stability [Umetani and Schmidt 2013], as
the material properties are highly anisotropic. Also, the visual ap-
pearance of the surface depends on the orientation: because the sur-
face quality depends on the orientation of the surface relative to the
build direction [Wang et al. 2016]; or because of the attachment
of support material [Zhang et al. 2015]. Orientation has also been
optimized in view of the error due to slicing, either standard uni-
form slicing [Thrimurthulu et al. 2004; Cheng et al. 1995], or in
combination with variable slice thickness [Xu et al. 1997]. Print-
ing directions have also been evaluated in terms of accuracy for
a decomposed object such that each part is uniformly sliced in its
optimal printing direction [Hildebrand et al. 2013].

We assume the orientation is fixed. This seems to be the case
in most practical situations, where the orientation has already been
chosen by the user or optimized (for one of the reasons mentioned
above). We could also search over a set of discrete orientations to
find the orientation that leads to the overall smallest slicing error,
potentially using global optimization strategies [Danjou and Köhler
2009]. Our goal, however, is to trade between process time and
accuracy. For the same orientation, the number of slices strongly
correlates with manufacturing time (see Section 7). However, the
same number of slices for different orientations results in very dif-
ferent manufacturing times, as the area and perimeter of the con-
tours change completely. It is unclear whether it would be possible
to reliably estimate the time in this more general setting.

3. SETUP

For ease of exposition, we describe the approach for a discrete grid
aligned with the layer directions. As a running example we will use
the ‘hourglass’-shape depicted in Figure 1, on which we try to illus-
trate the main ideas and points of this work. Layers are assumed to
be spanned by the first two canonical directions (i.e. ”x” and ”y”),
and the slicing direction is along the third canonical direction (i.e.
”z”). Moreover, we assume the grid constant δ to be the same for x
and y, while the grid constant ∆ in z may be different. This reflects
that most practical devices have significantly different resolution in
the layer directions and the slicing direction, while the resolution
within each layers is mostly uniform. There is no technical reason
for using the same grid constant for the two axes within the layers
– we just do so for notational convenience. In this setting, the ma-
trix D = diag(δ, δ,∆) connects integer coordinates z ∈ Z3 with
locations Dz in R3.

3.1 Shape representation

Let S be a given shape (bounding a volume) in R3, conceptually
described as an occupancy grid

S : Z3 7→ {−1, 1}, (1)

where a value of 1 means the grid point is inside the shape. Note
that most other representations of closed shapes could be easily
converted into this format. This conversion may introduce geomet-
ric and topological error. Geometric or topological features that
cannot be represented on the grid could not have been manufac-
tured, so the discrete representation causes no loss relative to the
physical artifact to be manufactured. The reach [Federer 1959]

1

0

z

Δ

δx,y

N

Fig. 1. The input shape S is assumed to cover [0, 1] in direction z. The
shape is discretized and represented on an occupancy grid with grid constant
∆ = 1/N in direction z, whereN is the number of layers along z covering
the shape; and grid constant δ in the directions x and y.

z0=0

z1

z2

z3

z4=N

z0=−1

z1

z2

z3

z5=N+2

z4

12

8

4

8

7

7

7

7

7

Fig. 2. A slicing is represented by the sequence Z = {z0, z1, . . . , zn}
along the z-direction. The height of slices may vary (left). Admissible slice
heights T = {h0, h1, . . .} ∈ ∆Z+ are a subset of integer multiples of
∆ so that all slice boundaries necessarily align with the grid. The slices
cover the object. The first and last slice may extend beyond the shape to ac-
commodate restrictions in the available slice heights, such as in the uniform
slicing on the right.

(which has been aptly called local feature size in computational
geometry [Amenta and Bern 1999]) can be used to relate features
to the grid resolution and decide whether a feature could be repre-
sented on the grid [Huang et al. 2013].

An important part of our implementation is that we never store
the shape as a discrete binary grid in our implementation. Instead,
we store sorted lists of boundary positions between inner/outer vox-
els along each (x, y) column (see Section 4.2).

By an appropriate choice of uniform scaling, which we subsume
into the grid constants D, we align the extent of the shape in z-
direction with the unit interval [0, 1]. This also means that the grid
constant ∆ along z-direction is of the form N−1, N ∈ N, because
the interval boundaries need to be represented as multiples of ∆.
In the following, we will ’think’ in integer values z ∈ Z that relate
to positions in R by the map D, as mentioned above (see also Fig-
ures 1 and 2). Note that (integer) z = 0 maps to (real) 0 and z = N
maps to 1.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • Alexa, Hildebrand & Lefebvre

3.2 Slicing

A slicing of the shape S is an ordered sequence

Z = {z0, z1, . . . , zn}, zi ∈ Z
z0 < z1 < . . . < zn, z ≤ 0, zn ≥ N

(2)

representing the n slices [zi, zi+1] that together cover the shape,
i.e. [0, 1] ⊆ ∪i[zi, zi+1] (see Figure 2). Note that we do not require
the start of the first slice z0 and the end of the last slice zn exactly
align with the boundaries of the shape (i.e. z0 = 0, zn = N).
For one, given restricted slice thicknesses it may be impossible to
align both the start and the end. More importantly, the exact starting
and ending point should be the result of minimizing the error. We
do require, however, that the whole shape is covered with slices.
Allowing z0 > 0 or zn < N would imply that the bottom and
top of the shape might be not represented with slices, which would
mean different parts of the shape are treated differently.

The slices must be elements of a set of available thicknesses T
(which are necessarily multiples of ∆):

zi+1 − zi ∈ T = {tmin, . . . , tmax} ⊆ Z+. (3)

The number of elements in Z directly relates to the number of
slices n : |Z| = n + 1. Given the minimal and maximal thickness
of slices, we thus expect to have roughly at least N/tmax and at
most N/tmin slices.

3.3 Error

Layered manufacturing builds an approximation of the geometry
within an interval [zi, zj]. We assume this geometry is extruded
along the z-direction. This allows to represent the geometry within
a slice with a discrete binary image. We denote the image for an
interval as Czj

zi : Z2 7→ {−1, 1}. The approximation of the shape
results from using the valuesCzj

zi (x, y) for the range z ∈ [zi, zj]. If
needed, the image Czj

zi could be converted into a contour polygon
using any contouring technique.

Now computing the error in each slice simply means counting
the number of mismatches between S restricted to the interval and
the replacement geometry. Noting that the difference of the two
values is zero if they are equal, while it is ±2 if they differ, we can
measure the per-slice error as

E(zi, zj) =
1

2

zj−1∑
z=zi

∑
(x,y)∈Z2

|S(x, y, z)− Czj
zi (x, y)|. (4)

The definition of the slice geometry and the resulting error is illus-
trated in Figure 3 for two of the slices in the left slicing of Figure 2.
Note how different choices for the slice geometryCzj

zi (x, y) lead to
different errors and that using the contour of the slice at the bound-
ary or the middle may not lead to the smallest error within a slice.
We will explain how to systematically minimize the error within a
slice in Section 4.

This way of defining the error means that the volume of a fea-
ture represents its importance. Depending on the application sce-
nario, this may or may not be true. We note that some related work
defines the slicing error differently, mostly to accommodate spe-
cific problems. For example, Wang et al. [2015] argue that features
salient for the human observer should be reproduced more accu-
rately — and therefore use mesh saliency [Lee et al. 2005] as a
component of their error metric. This makes sense in the intended
application scenario, yet would be inappropriate if shapes are in-
tended to have some mechanical function where precision matters
most [Coros et al. 2013; Koo et al. 2014; Bächer et al. 2012].

We believe it is better to start from considering each volumet-
ric element equally and then offer to weight the error. The weights
could be computed from the shape (such as in the scenarios de-
scribed above) or be supplied by the user (we demonstrate this in
Section 7.3). In either case we assume to have spatially varying
weights w(x, y, z) and then define the weighted error as

E(zi, zj) =
1

2

zj−1∑
z=zi

∑
(x,y)∈Z2

w(x, y, z)|S(x, y, z)− Czj
zi (x, y)|.

(5)
The total error results from summing up over all slices:

E(Z) =

n−1∑
i=0

E(zi, zi+1). (6)

In the following, we will first derive a data structure that allows
us to quickly compute the optimal per-slice geometryCzj

zi and store
all errors for any potential slice. Based on this information, we will
then compute optimal sequences.

4. COMPUTING AND MINIMIZING SLICE ERRORS

In the following section we show how to compute the errors
E(zi, zj) for all pairs zi, zj that represent an allowed thickness, i.e.
zj − zi = τij ∈ T . The error depends on the contour represented
by Czj

zi . As our goal is to minimize the overall error resulting from
slicing, we also want to choose this contour such that the resulting
error is minimized.

4.1 Locality of error and optimal contours

Our key observation is that the error within a slice from zi to zj can
be computed for each (x, y) position independently (see Eqs. 4, 5).
Denote this error as

E(x, y, zi, zj) =
1

2

zj−1∑
z=zi

w(x, y, z)|S(x, y, z)− Czj
zi (x, y)|. (7)

A single column along (x, y) within a slice is assigned either to the
inside or to the outside: Czj

zi (x, y) remains constant in the summa-
tion, and is either 1 or −1. Inspecting the two cases and rewriting
the result using the following abbreviations

S
zj
zi (x, y) =

zj−1∑
z=zi

w(x, y, z)S(x, y, z) (8)

W
zj
zi (x, y) =

zj−1∑
z=zi

w(x, y, z) (9)

shows that the error can be expressed as

E(x, y, zi, zj) =
1

2
(W

zj
zi (x, y)− Czj

zi (x, y)S
zj
zi (x, y)). (10)

The error is minimized when the product in the second term is pos-
itive. We thus set

C
zj
zi (x, y) = sgn S

zj
zi (x, y). (11)

This result is quite intuitive, especially in the unweighted case
w(x, y, z) = 1: if more than half of the elements for one (x, y)
position in a slice are inside (resp. outside) then the optimal assign-
ment for this position is inside (resp. outside). The resulting error
equals the number of elements that differ from this assignment.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 5

12 12 8 8

40 56 32 32

Fig. 3. The geometry of a slice is obtained by extruding its image along the z-axis, i.e. slices are approximated to have vertical walls. This results in an
approximation error, as some grid cells that belong to the inside of the object are not part of a slice (light red) and some grid cells that belong to the exterior
are part of a slice (dark red). The error of a slice is the number of wrongly classified grid cells. Using the midlevel contour for approximation is optimal only
if a ray along the z direction intersects the geometry not more than once (compare upper vs. lower row). The optimal contour is not necessarily unique (slices
on the right).

It is insightful to see when and how the resulting contours differ
from the common approach of intersecting the shape against the
slice boundaries or the mid-level of the slice (see Figure 3). Intu-
itively, if a slice contains small features, the contour at any fixed
height may fail to adequately reflect this. The notion of small fea-
ture in this context relates to local feature size, however, measured
only along the slicing direction and how it intersects the slice. We
can distinguish different situations based on the number of inter-
sections:

No intersection: This means the feature is large relative to the
slice and all elements along the ray are inside or all are outside.
Intersecting the slice at any position would generate optimal geo-
metric and topological representation.

1 intersection: This means the boundary of one feature inter-
sects the slice. As the feature is connected (there is only one in-
tersection), the dominating part contains the center of the slice. In-
tersecting at the mid-level would generate the same assignment as
minimizing the error (see Figure 3, upper row). This assignment
would also locally capture the topology of the feature correctly.

2 or more intersections: Intersecting the slice at any level gen-
erally fails to minimize the volumetric error (Figure 3, lower row,
illustrates how the mid-level contour fails to be optimal). Our ap-
proach generates assignments that minimize the volumetric error.
Topology of the input is generally not captured correctly.

Note how the last case relates the number of intersections with
topology. If we wanted to avoid topological problems resulting
from slicing we could also assign E(x, y, zi, zj) = ∞ when more
than two intersections occur. As such slices are unavailable this
would effectively avoid topological inconsistencies resulting from
selecting thick slices: for none or one intersection our assignment
is identical to the intersection with the mid-level of a slice, so the
topology would be preserved (compare [Huang et al. 2013]). We
discuss the issue of geometric accuracy further by relating our ap-
proach, and slicing in general, to signal processing in Section 6.

Optimal contours also lead to an important property for the ap-
plication of dynamic programming for finding optimal slicing se-
quences (see Section 5): the error of a slice can only increase when
we make the slice thicker. More formally, we claim that

z′i ≤ zi < zj ≤ z′j =⇒ E(zi, zj) ≤ E(z′i, z
′
j) (12)

b0

b1

b2

b3

b1

b1

b2

b2

zi

zi

zi

zi

zj

zj

zj

zj

Fig. 4. Per-slice errors can be quickly updated for each location by con-
ceptually intersecting a ray along slicing direction against the boundaries
of the shape. Intersections b0, b1, . . . represent changes from outside to in-
side for even indices and from inside to outside for odd indices. The ray
contributes to the error of a slice only if the slice contains any intersection.
The computational complexity of computing the error is proportional to the
number of intersections, and independent of the number of elements a slice
contains.

for optimal choices of Czj
zi (x, y) and C

z′j
z′i

(x, y). The claim directly

follows from optimality. For the same assignment Czj
zi (x, y) =

C
z′j
z′i

(x, y) the statement is true because the wrongly assigned grid
cells in the thinner slice [zi, zj] are a subset of those in the thicker
slice [z′i, z

′
j]. If this assignment was optimal we are done; if not,

picking the optimal assignment will only further reduce the error.

4.2 Efficient evaluation

Our goal is to compute the errors E(zi, zj) for all possible pairs
zi, zj quickly. As just explained, we can perform this computation
independently for positions (x, y) and do so in parallel. Accumula-
tion in a global table is done using atomic add operations.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • Alexa, Hildebrand & Lefebvre

As mentioned before, the shape S(x, y, z) is not available as a
discrete grid, as the large memory footprint would significantly de-
grade performance. Fortunately we can generate information for
the slice errors locally, as the slice thicknesses are small compared
to the height of the volume.

So consider a fixed position (x, y) (we drop the index to x, y
for brevity in the following). We may think of a fixed position as
a ray in slicing direction (see Figure 4). If the intersection of ray
and a particular slice are completely outside the shape, we assign
the (x, y) position in this slice to the outside and the error resulting
form this assignment is zero. Similarly, if the intersection is com-
pletely inside the shape, we assign the (x, y) position in the slice
to the inside and the error is also zero. This means we only need
to consider a slice if it contains an intersection of the ray with the
boundary.

We start by computing the boundary intersections

b0 < b1 < . . . < bm−1 (13)

for the ray at (x, y) along z. Here, b0 is the ‘first’ intersection of the
ray along (x, y) in slicing direction. At this point, the ray changes
from being outside the shape to being inside. Consequently, at b1 it
changes from being inside to being outside again. Generally, inter-
section with even indices indicate changes from outside to inside,
while odd indices indicate changes from inside to outside. As the
ray starts on the outside and ends outside, the total number of events
m is even.

Intersections are handled consecutively; let the current intersec-
tion be bk. This intersection affects the error E(zi, zj) of all slices
for which zi ≤ bk < zj . By indexing the error table based on
the lower boundary zi and height zj − zi of a slice and exploit-
ing that heights are bounded by tmax we can directly loop over all
candidate slices. It may seem natural to iterate through the inter-
section bk, iterate through slices, account for the intersection and
store the information in a temporary variable. Yet, we have found
that is beneficial to avoid recording per-slice information and rather
consider each slice only once. To do so, we handle a slice with the
first intersection it contains. This just adds the additional constraint
zi > bk−1. Together this leads to the loops in lines 2 and 3 of Al-
gorithm 1 below.

So for each slice containing bk, we collect any additional in-
tersections. This means we check if bk+1 is also contained in the
slice, i.e. bk+1 < zj . If it is, we repeat the procedure until we
find bk+l+1 > zj or we have reached the last intersection, i.e.
k+l+1 > m−1. After this step we have identified the intersection
points bk, . . . , bk+l included in the interval [zi, zj].

Note that for fixed zi, looping over available slice heights means
we are considering thicker and thicker slices, and each slice con-
tains the previous slice. This means each slice in the loop contains
at least the intersection points found for the previous one. So for
each slice we only need to check if it contains the next intersec-
tion point, and if not we can move on, making this a very efficient
procedure.

Based on the slice boundaries zi, zj and the included intersection
points bk, . . . , bk+l we could evaluate the sum S

zj
zi (x, y) following

Eq. 8 by summing up over the grid cells. However, we can reduce
the complexity from being linear in the discrete height to linear in
the number of intersections for uniform weights; and by using an
approximation also for non-uniform weights. This is important as
the dominant case by far is that the slice only contains one inter-
section point; more than one intersection would require the slice
containing a very thin feature of the shape.

In the case of uniform weights, the value S(x, y, z) along each
of the intervals [zi, bk], [bk, bk+1], . . . , [bk+l, zj] are constant and
either −1 or +1. This means their contribution to Szj

zi (x, y) is just
plus or minus their thickness, e.g. the contribution of the first in-
terval [zi, bk] is ±(bk − zi). The sign depends on the type of in-
tersection: if bk is a change from outside to inside the interval is
outside so the contribution is−(bk−zi); or (bk−zi) if the interval
is inside. Recall that the index k is even for changes from outside
to inside, and odd otherwise. This means we can write the contri-
bution of the interval as (−1)k(zi − bk). Extending this idea to all
intervals leads to the inner loop detailed in Algorithm 1.

Algorithm 1: Error per slice for fixed position (x, y)

Data: Position (x, y), intersections b0, b1, . . . , bm−1 at this
position

Result: Updated errors E(zi, zj)
1 for k ∈ [0, . . . ,m− 1] do
2 for zi ∈ [max(bk − tmax, bk−1), bk] do
3 for zj ∈ [bk, zi + tmax] do
4 S ← (−1)k(zi − bk)
5 l← k + 1
6 while bl < zj do
7 S ← S + (−1)l(bl−1 − bl)
8 l← l+ 1

9 S ← S + (−1)l(bl−1 − zj)
10 E(zi, zj)← E(zi, zj) + (zj − zi)− (sgnS)S

For the weighted case we suggest to evaluate the weight function
only in the heights zi, bk, . . . , bk+l, zj and use a piecewise linear
approximation. This means each interval is weighted by the average
weight values, e.g. the contribution of the first interval [zi, bk] to
S

zj
zi (x, y) is (−1)k 1

2
(w(x, y, zi) + w(x, y, bk))(zi − bk), and so

on for the following intervals. The computation of W zj
zi (x, y) also

needs to sum up over intervals, similarly to the ones above except
the sign is always positive.

5. OPTIMAL SEQUENCES

Based on the table of errors for each potential slice, we wish to
compute sequences Z that lead to smallest possible error. The ideal
solution in practice may depend on many factors. In some scenarios
would like to bound the resulting error; in others it one wants to
bound the manufacturing time. We try to offer a convenient solution
by computing sequences with minimal error for all possible number
of slices.

A related but slightly more restrictive formulation would be
to ask for the shortest sequence that satisfies a given error
bound [Wang et al. 2015]. We have found two practical problems
with this approach: 1) it is difficult to guess the error to achieve the
desired effect; 2) even when continuously adjusting the error, not
all sequence lengths are available. By providing the best sequence
for all possible lengths, it is very easy to pick a sequence with de-
sired error or length.

This problem in general appears similar in flavor to weakly NP-
complete problems [Garey and Johnson 1979] such as knapsack.
Rather than analyzing the complexity of the problem in detail, we
show that, like knapsack, it has a pseudo-polynomial time solution
using dynamic programming. For the instances we face it is very

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 7

efficient in practice. Our main idea is to parameterize optimal solu-
tions over the number of slices, i.e. instead of computing only one
solution for a given number of slices, optimal solutions for all pos-
sible sequence lengths are generated in one pass. This is what sets
our approach apart from other common uses of dynamic program-
ming in this context.

We first give an intuitive explanation of our approach and intro-
duce the necessary notation. Then we provide a practical solution.

5.1 Idea and notation

Intuitively, we compute all optimal sequences leading to each z-
value. The main idea is to iterate over the discrete set of z-values:
given all optimal sequences reaching z, z−1, z−2, . . ., we generate
sequences reaching z + 1 by considering all possible extensions of
the existing sequences.

To make this concrete, let τm(z) contain the thickness of the last
slice in the optimal sequence with m elements ending at z. If no
sequence of m elements exists we set τm(z) = 0. First note that
this information suffices to reconstruct the whole sequence: starting
from zm we can go backwards iterating

zi−1 = zi − τi(zi) (14)

until τi(zi) = 0. This observation means the set {τm(z)} for all
possible m and z′ < z encodes all optimal sequences leading to
heights z′ < z. How can we generate sequences that lead up to
z+1? For a sequence to be optimal, have lengthm and end in z+1
we need a thickness t ∈ T so that τm−1(z−t) > 0. However, there
is usually a choice of different values for t and we wish to pick the
one that leads to the optimal sequence, i.e. the sequence with the
smallest error.

So for each sequence, we also need know its total errorEm(z) up
to z. Based on this information we choose the optimal thicknesses
for each m simply by considering the total error:

Em(z) = Em−1(z − t) +E(z − t, z). (15)

Assuming there exists one or more thicknesses t such that
τm−1(z − t) > 0 we pick based on the error above. That this up-
date step indeed leads to optimal sequences requires the property
that subsequences of optimal sequences are optimal. This is true
whenever thicker slices won’t have smaller error. We show this to
be true for volumetric error – the approach would more generally
work for any error measure satisfying this property.

The result of this approach is a table of thicknesses τ , encod-
ing for each height and sequence length the optimal choice of slice
thickness. We have visualized this table by color coding the thick-
ness in Figure 5. The left and right boundaries show the the limits
of possible sequence lengths, i.e. the shortest and longest slicing
sequence. We also see how different geometric features require dif-
ferent slice thicknesses for the sequence to be optimal.

5.2 Implementation

The basic idea explained above directly leads to an algorithm. Im-
portant details for the implementation are where to start and end the
sequences, initialization, processing for the extension of sequences,
and efficient storage of intermediate values. In the end we need to
present the computed values to the user and retrieve the desired
slicing sequence. We go through these items in order and briefly
analyze the computational complexity.

Limits. It is possible to fix the starting point to z0 = 0. How-
ever, it is not clear that this is the optimal choice, so we keep the
starting point more flexible. Since the first slice should intersect

z

m

Fig. 5. The table of thicknesses generated by dynamic programming for
an hourglass shape. Thickness is color-coded, starting with light gray for the
thinnest available slice. The smaller slopes towards the center of the shape
require thinner slices. This shows in the table as larger portions of each row
being assigned to thinner slices, in particular the larger amount of light gray.
The center itself, however, is better covered with one thicker slice.

the object, we restrict the starting point to −tmax < z0 ≤ 0. For
similar reasons we restrict the endpoint to N ≤ zn < N + tmax.

The longest possible sequence results from using the thinnest
slices in the range 0 < z < N , and then one slice on each end
extending the sequence to include the boundaries. This meansm ≤
(N − 2)/tmin + 2. While we could bound m also from below and
make the bounds depend on the current height z it turns out that
this will be unnecessary for our implementation.

Initialization. Given the bounds, we set Em(z) = ∞ in the
ranges m ∈ [1, b(N − 2)/tminc + 2] and z ∈ [1, N + tmax − 1].
This means any sequence of length m > 0 ending in z > 0 that
can be build from available slice thicknesses will be accepted. We
will use the test Em(z) < ∞ to check whether a sequence exists.
If so, this sequence can be extended.

To be able to start the process, we initialize the range z ≤ 0
with empty sequences (i.e. no slice). Since below z = 0 there is
no shape, using no slice incurs zero error. In other words we set
E0(z) = 0, z ∈ [−tmax + 1, 0].

Processing. We iterate through heights z > 0. For each z,
we try to extend an existing optimal sequence ending before z
by adding an admissible slice. This means for fixed z we iterate
through sequence lengthsm ∈ [1, b(N −2)/tminc+2] and admis-
sible slice heights t ∈ T . For each combination we check

Em−1(z − t) +E(z − t, z) < Em(z). (16)

If this test succeeds we set τm(z) = t and Em(z) = Em−1(z −
t) +E(z − t, z). The order and the test are based on the following
observations:

—The per slice error E(z − t, z) has been precomputed.

—If no sequence with length m− 1 ending at z− t exists, its error
is infinity. This meansEm(z) will be unchanged only if its value
is infinity.

—No specific treatment for the first slice is necessary. If z − t < 0
we find E0(z − t) = 0 so we can extend the empty sequence to
a sequence consisting of the single first slice.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • Alexa, Hildebrand & Lefebvre

In this way we iterate as long as z < N + tmax. Algorithm 2
provides pseudo code.

Algorithm 2: (Conceptual) Optimal discrete slicing algorithm.

Data: Set of admissible slice heights T ⊆ Z+, errors
E(zi, zj) for all possible slices

Result: Optimal slicing sequences Zn = {zn0, zn1, . . . , znn}
for all possible n, implicitly stored in τn(z)

1 for z ∈ [1− tmax, . . . , 0] do
2 E0(z)← 0

3 for z ∈ [1, . . . ,N + tmax − 1] do
4 for m ∈ [1, . . . , b(N − 2)/tminc+ 1] do
5 Em(z)←∞
6 for t ∈ T do
7 if Em−1(z − t) +E(z − t, z) < Em(z) then
8 τm(z) = t
9 Em(z) = Em−1(z − t) +E(z − t, z)

Storage. In practical tests we found that running times of this
algorithm are fine, while storage might cause problems:Em(z) and
τm(z) are potentially large 2D arrays storing respectively a float
(error) and an integer (thickness index).

We make the following important observations that alleviate the
storage problem and make the algorithm practical:

—At any z, information about the errors Em(z) is needed only in
the range z ∈ [z−tmax, z]. After processing we need to compare
the errors for all z ∈ [N,N+tmax]. So at any point we only need
at most tmax consecutive rows of values Em. Consequently, we
store errors in a ring buffer of length tmax. When we move to z,
errors at height z−tmax−1 are discarded and new errors at level
z are initialized.

—We cannot discard thickness information τm(z) because it con-
tains the information to reconstruct the slice sequences. On the
other hand, we never need to access this information once it
has been created at level z. This suggest to compress the vector
τm(z) as we progress from z to z+1. Not surprisingly, τm(z) is
mostly a function that slowly grows with m, meaning the dom-
inating behavior is τm(z) = τm−1(z) (see Figure 5). We use
straightforward run length encoding to exploit it.

We provide information on timing and memory requirements for
practical applications together with the resulting slicing informa-
tion in the next section and in Table I.

Consolidation. After all heights have been processed, the
range z ∈ [N,N + tmax − 1] contains optimal sequences that
cover the whole shape. So the minimal error that can be achieved
for a sequence with m slices is minz∈[N,N+tmax−1]Em(z) . We
can present this information to the user in form of a curve (see
for example Figures 13, 14, and 15). This immediately provides
an overview over the different sequence lengths available and the
resulting error. If necessary, we could also try to estimate the man-
ufacturing time (which is based on a variety of factors, depending
on manufacturing technology) and relate errors to time.

Once the user selects the sequence, it can be reconstructed by
starting from zn = arg minz∈[N,N+tmax−1]Em(z) and then visu-
alized.

Complexity. The time complexity of this approach directly fol-
lows from the three loops: the outer loop visits O(N) different dis-
crete heights; for each height all sequence lengths are considered,
so this loop is bounded by O(N/tmin); and for each combination
at most all ‖T ‖ ≤ tmax − tmin slice thicknesses are checked. To-
gether this leads to an asymptotic worst case time complexity of
O(N2tmax), however, we note that the very premise of slicing is
tmax � N .

Whether or not the quadratic time complexity leads to a practical
algorithm depends on the constant and realistic values for N . We
show that the algorithm runs quite fast in practice in Section 7.

Space complexity for the values of τ is also clearly quadratic in
the uncompressed form (just note that Figure 5 shows the stored
data). The high coherency in the data makes RLE compression
quite effective and we see very modest storage requirements in
practice (see Section 7).

5.3 Variations and extensions

While we believe the basic version of the algorithm is quite prac-
tical, it can be varied or extended to match certain specific scenar-
ios. Note that in any version the dynamic programming approach
is independent of the error measure. One could simply replace the
volumetric error measure with any other error measure – as long as
the error is never decreasing with the slice thickness.

Hard constraints. It might be desirable that certain heights z
are exactly matched with a slice boundary. Examples that come to
mind are mechanical pieces that need to match certain measure-
ments; or topological features along the slicing direction that can
be enforced by making sure that slices start or end at the bound-
aries of the feature. While it is possible to use weighting to achieve
this goal, we wish to mention that hard constraints are easy to im-
plement and even make the algorithm faster.

To illustrate this let us first consider the cases of enforcing that
the first slice starts at the bottom of the shape (z0 = 0) and ends
at the top of the shape (zn = N). This can be done by starting the
first slice at z = 0. In our implementation we could enforce this
by setting only E0(0) = 0 and disable all other empty sequences,
i.e. E0(z) = ∞, z < 0. For enforcing the last slice to fit the top
of the shape we simply stop the iteration at z = N , and then only
consider the sequences ending at this height.

Any constraint 0 < z < N in between top and bottom leads to
subdividing the slicing process into different parts: one parts has to
end at z and the next has to start at z.

Local error bound. We have considered global errors, i.e. the
sum of per-slice errors. One can also make sure the error of each
slice is bounded. The simplest way of doing so is during the error
computation by simply discarding the slices that exceed the thresh-
old. It also possible to add a check for the local error into the slicing
procedure. We wish to stress that bounding only the local error is
still a global problem.

Inter-slice coherence. In our approach we have considered
slices to be independent – each slice can be used independent of
the choice of other slices. There may be cases where this is not
true. Consider, for example, that there are two (or more) ways to
generate geometry for a slice, resulting in different topology. This
would mean that adjacent slices need to fit this choice of topology.

We could implement this by also iterating over the different topo-
logical choices, just as we currently consider, at each level z, dif-
ferent lengths m. This would allow generating slice sequences that

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 9

164 52 4460

Z

E(Z)

Δz = 7
{−1,6,13,20,27,34}

Δz = opt
{0,9,14,18,23,32}

Δz = 4
{0,4,8,...,28,32}

Δz = opt
{0,4,9,14,18,23,28,32}

#slices = 5 min E(Z)

Fig. 6. Slicing the hourglass shape – uniform vs. optimal. The left results
are generated with a target of 5 slices. Uniform slicing leads to overestimat-
ing the shape, resulting in large volumetric error. Optimal slicing provides
a significantly better result using the same number of slices and a minimal
thickness of 4. On the right we show the best uniform result for a minimum
slice thickness of 4 as well as an optimal slicing having smaller error while
using one slice less.

have different global topology, but each of them would be consis-
tent along the sequence.

Streaming. The data in digital manufacturing can be massive
and might be too large to fit into main memory. It is trivial to pro-
cess the shape in the error tcomputation step in a streaming fashion:
if streaming has to happen along slicing direction it should be pro-
cessed in chunks. Otherwise it is better to process it along one of
the other two directions.

Once the errors have been computed, generating the slicing se-
quence can be performed with rather low main memory require-
ments. As noted, the sequences τm(z) can be compressed, and
since they are not needed during processing, they might as well
be transferred to secondary storage. Once a sequence is selected,
data is accessed in sequential order again.

6. ANALYTIC COMPARISONS

In this section we perform an analysis of slicing algorithms based
on the volumetric error. Furthermore, we relate slicing to sampling
in order to make statements that are independent of the type of error
one considers.

As a running example for this section we use the small discrete
hourglass shape discretized to 32 levels. For the available slice
heights we assume T = {4, . . . , 16}, i.e. the smallest available
thickness is tmin = 4 and thickest slice is tmax = 16, with all
heights between the two extreme values being available. Our goal
will be to generate good sequences with 5 slices, or the sequence
with smallest error possible.

Later, in the Section 7 we manufacture common shapes on sev-
eral devices, with the parameters derived from technical specifica-
tions. For some of these examples we provide plots of the discrete
volumetric error against the number of slices (see Figures 13 and
15) and/or visualizations of the volumetric error resulting from the
different slicing strategies. These illustrations show that the effects
discussed here for toy examples do carry over to real cases.

6.1 Optimal vs. uniform slicing

Dividing the 32 levels into 5 uniform slices means the slice thick-
ness should be 7. In addition, while it is common to align the first
slice with the lower boundary of the shape and potentially compro-
mise on the top, this choice seems arbitrary and the error could also
be distributed to both the top and the bottom. Figure 6 shows the
two best solutions for slices of uniform thickness 6 and 7. Note that
for slices of thickness 6 the solution Z = {0, 6, 12, 18, 24, 30},
which does align the first slice with the bottom of the shape is
among the optimal solutions, whereas for slices with thickness 7
this alignment has a larger error than the shown solution Z =
{−1, 6, 13, 19, 27, 34}.

The optimal solution outperforms uniform slicing for this task by
a large margin (see Figure 6, center). The reason for the bad perfor-
mance of uniform slicing is mostly the misalignment of the bound-
aries of the shape with the slices. While this effect gets smaller as
the shape becomes larger relative to the slice thickness, it may still
be relevant: in Figure 10 we show the volumetric error for a gear
model. The error mostly results from misalignment at the top and
bottom. As a result, the error is wildly varying for different number
of slices. The optimal result quickly achieves alignment and is then
optimal for a wide range of slice heights.

It may seem from these examples that the non-optimal results of
uniform slicing could be remedied by making sure that the height
of the shape is multiple of the slice height, as this would avoid
the large errors at the beginning and end of the sequence. Yet, the
problem is more subtle: the problems of uniform slicing stem from
misalignment of features that have small slope at any level. To see
this, consider the best finest uniform slicing, i.e. using 8 slices of
thickness of 4. This sequence perfectly aligns at the top and bottom.
It may be surprising that it is still not the best possible solution and
that, in fact, using less but thicker slices leads to smaller error (see
Figure 6, right). The reason is that uniform slicing fails to align
well to the middle part of the hourglass, where it is better to place
the slice symmetrically over the thinnest elements.

6.2 Adaptive slicing

One might think it is natural that adaptive slicing outperforms uni-
form (although the finest uniform slicing is commonly claimed to
be optimal in the literature). Other adaptive techniques have been
proposed, some of which may appear simpler to understand or im-
plement, and perhaps might be faster. We wish to compare to the
two main classes of greedy adaptive techniques:

—Fine-to-coarse strategies start from the finest available slicing
and selectively combine consecutive slices [Hayasi and Asia-
banpour 2013]. Our version of this strategy combines the pair
of consecutive slices that leads to the smallest increase in error –
unlike most methods in the literature that are based on the errors
of the slices to be combined. This strategy is illustrated for the
example task in Figure 7, left. In practice, combination of con-
secutive slices would have to be restricted to the available slice
thicknesses. For reference we denote this strategy as F2C.

—Coarse-to-fine strategies start from the coarsest possible slicing
and then selectively refine slices [Sabourin et al. 1996; Tyberg
and Bøhn 1999]. We have implemented two variants of this, both
of which refine the slice that leads to largest decrease in error
(and not the slice with the largest error regardless of the effect of
the refinement). The simpler version only considers subdividing
a slice into two slices of equal height (or differing by one unit
if the slice height is odd) and is denoted C2F. The general and
more costly version considers all possible subdivisions of a slice

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • Alexa, Hildebrand & Lefebvre

84 74E(Z)

{0,11,16,21,32} {0,4,11,16,21,32}

52 68

{0,4,8,12,20,24,28,32} {0,4,12,20,24,32}Z

fine-to-coarse coarse-to-fine

Fig. 7. Slicing the hourglass shape with adaptive techniques. For the fine-
to-coarse strategy (left) we combine the pair of consecutive slices that leads
to the smallest increase in error. For coarse-to-fine (right), we consider all
possible subdivisions of each slice and pick the one that leads the largest
decrease in error. Note that the results for 5 slices are not optimal, because
both strategies are limited by the initial uniform sequences (consisting of 8
resp. 2 slices).

and is denoted C2F*. The latter version is illustrated on the right
in Figure 7.

Both coarse-to-fine and fine-to-coarse can match a large range
of sequence lengths exactly, and our analysis and experiments show
that they significantly reduce the error compared to uniform slicing.
Yet, the illustration in Figure 7 clearly shows that both of them suf-
fer from any potential problem in the initial slicing sequence, which
is commonly chosen to be uniform. For coarse-to-fine, the eventual
adaptive slicing contains the initial sequence of slice boundaries as
a subset, i.e. any slice boundary present in the initial sequence will
also be present in the refined sequence. For fine-to-coarse, the re-
sulting sequence is a subset of the initial sequence, i.e. adaptation
is limited to choose among the initially available slice boundaries.

In both cases this limits the alignment to features (e.g. the small
but symmetric neck of the hourglass). This means, if any of the slice
boundaries in the initial slicing ’miss’ a feature (for example a flat
top such as in the Lego brick example), the subsequent refinement
or coarsening can never recover and the feature will not be repre-
sented in an optimal way. More generally, making local and inde-
pendent decisions throughout the process will fail to match slice
boundaries to features (see also the discussion on sampling below).

While the effects are exaggerated in the toy example, they
demonstrate our general findings with these strategies. Based on the
larger scale examples in Section 7, we find that the greedy adaptive
techniques are consistently outperformed by optimal slicing. Adap-
tive slicing is essentially limited by the available slice heights:

—Two slices, which are together thicker than the thickest available
slice, cannot be merged. This makes it difficult for fine-to-coarse
strategies to freely ’place’ thick slices where possible.

—A slice less than twice the thinnest slice cannot be subdivided.
This makes it difficult for coarse-to-fine strategies to match fea-
tures with the thinnest slices.

—If slice boundaries in the initial slicing are less than the thinnest
available slice from an important feature, this misalignment can-
not be corrected throughout the process. This means, both strate-
gies are effectively limited by the smallest available slice height
tmin.

These effects are clearly visible in the plots provided in Figures 13,
14 and 15. In contrast, optimal slicing can match features at the res-
olution of ∆, as long as the features are separated. The fact that ∆
is much smaller than tmin explains why optimal slicing can pro-
vide an advantage over greedy adaptive techniques. The experi-
ments also show that optimal slicing is very fast in practice (we
discuss this in more detail Section 7).

We also find that the optimal algorithm is not substantially more
complicated than the greedy heuristics.

6.3 A signal processing view of slicing

A claim commonly found in the literature as well as apparently
generally accepted in the community is that uniform slicing at the
finest level (i.e. the thinnest available slice) would necessarily yield
the best result [Pandey et al. 2003b]. While we have shown that
this clearly not the case for volumetric error, one could still specu-
late that for other metrics this might be true. Here we relate slicing
to sampling and, in this way, suggest why our findings should be
expected, independent of the choice of metric.

We may interpret slicing as a sampling and reconstruction pro-
cess, where the signal is given as the contour over z. Our assump-
tion that the contour is constant along the z-axis within a slice im-
plies that the reconstruction filter of this process is a box function.
In this view, uniform slicing is regular sampling.

In particular, taking the intersection of the slice boundaries or
mid-level of a slice with the shape to generate contour corresponds
to point sampling of the signal. It is well understood that point sam-
pling causes aliasing artifacts, which is what we see in Figure 3.
Our approach of minimizing the volume error (Section 4) can be
interpreted as using a box kernel for sampling, which optimally
matches the reconstruction filter.

Regardless of the kernel used, uniform sampling causes aliasing
if the frequency of the signal is higher than the sampling rate, which
translates to the shape having features that are smaller than the min-
imal thickness of slices. Unless the slice could be made thinner than
the smallest feature, thinner slices may well result in more aliasing
artifacts. Note how our results for uniform slicing clearly demon-
strate this phenomenon — the error may increase significantly for
particular slice thicknesses, including the thinnest ones available.

One may view coarse-to-fine or fine-to-coarse strategies as
dyadic (or generally n-adic) wavelet constructions. While this is in-
deed an optimal way to balance the number of coefficients (slices)
and the quality of the approximation for smooth signals, it may
be arbitrarily far from optimal in the presence of singularities (i.e.
edges in the shape).

The only way to generate optimal results for arbitrary signals is
to adapt the basis functions (i.e. the local widths of the analysis and
reconstruction filters) to the input. Our approach could be related
to approximating a (piecewise constant) function with another arbi-
trary piecewise constant function. For other error norms and with-
out considering restrictions on the width, Konno & Kuno [1988]
show that optimal solutions can be constructed using dynamic pro-
gramming (in fact, we believe a greedy approach would have suf-
ficed in the max-norm regime). One may view our algorithm as a
generalization of their approach to the situation where the widths
cannot be chosen arbitrarily: the maximal and minimal slice height
are restricted.

7. EXPERIMENTS AND RESULTS

Now that we have shown that our approach has significant theoreti-
cal advantages, we focus on evaluating whether the gain in theoret-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 11

ical measures such as number of slices and volumetric error indeed
translates into manufacturing time and quality of the manufactured
shapes.

As manufacturing technologies we consider fused deposition
modeling (FDM) and stereolithography (SLA). The particular de-
vices being used are an Ultimaker2 for FDM and Autodesk Ember
for SLA. Our approach for setting the discretization is to use manu-
facturer information on how the motors are controlled or what accu-
racy could possibly be achieved. Then we either match the internal
discretization or simply use a fraction of the promised accuracy.

The height is controlled on both devices by stepper motors. For
the Ultimaker we find that the motor makes a step of 1.875µm,
while the Autodesk Amber makes steps of 1µm. We use these val-
ues to set the grid constant ∆ in slicing direction. This means every
height value we consider in our computations is at least theoret-
ically matched by the hardware (the actual precision in height is
usually less due to material properties and environment conditions).
Using a smaller value for ∆ would mean that we are considering
and generating values that cannot be achieved by the devices and
would be mapped to a coarse grid before actuation.

In addition, we have manufactured an artifact by cutting slices
out of plywood and then glueing the slices together. Here the avail-
able slice thicknesses are given by the available plywood. We set
∆ = 0.1mm, as the inaccuracies in the plywood and the assembly
process are likely an order of magnitude larger.

For δ we we use different strategies for the two devices: the Au-
todesk Amber projects a pattern onto the resin using a projector.
Here we use the size of the pixels on the resin, which are reported
to be 25 µm. For the Ultimaker we consider the size of the nozzle,
which is 400 µm. By taking δ = 50 µm we make sure that the res-
olution of our computation is well below the resolution within the
layer that could conceivably be achieved. We use a similar value
for the plywood example for convenience.

Table I provides further details on the range of parameters in
the examples, such as physical dimensions, number of slices, and
computational resources. The performance numbers were gener-
ated using a 2,8 GHz Intel Core i7 processor with 16 GB RAM
and a AMD Radeon graphics card with 2GB GPU memory. Error
computation and slicing strategies have been implemented as part
of IceSL, a GPU-based modeling and slicing tool [Lefebvre 2013].
It directly generates gcode for several common devices and gave
us direct control over layer thickness and path generation from the
contour (FDM) or slice image (SLA).

Figures 13, 14 and 15 provide the results of the practical evalu-
ation: we start by uniformly slicing an object with thin slices (left
column). Then we match the volumetric error using optimal slic-
ing, with optimal slicing requiring much fewer slices for the same
error. As can be seen, fewer slices indeed result in faster printing
times. We try to match the faster printing time using uniform slices,
which are necessarily much thicker and indeed lead to visible arti-
facts (right column).

Based on this set of examples we discuss the issues of computa-
tional resources (memory and time), the relation of number of slices
and actual process times, and visual quality of the results relative
to the volumetric error and how the error could be adapted.

7.1 Computational resources

Recall that the worst case complexity of the algorithm is quadratic
in the number of discrete heights N . The important finding from
practical scenarios is that the algorithm is quite fast and the com-
pression of the table leads to a very small memory footprint.

50 100 150 200

100

200

Height [mm]

Time [sec]

50 100 200

100

101

102

103

Height [mm]

Memory [MB]

Fig. 8. Computational resources relative to the resolution for the
3DBENCHY. The left plot shows computation times and the right plots un-
compressed and compressed data, both relative to the height of the shape
for fixed FDM parameters. Adjusting the height for fixed ∆ is roughly
equivalent to varying ∆ for fixed height. Note that storage requirements
also change from quadratic in the uncompressed case to linear for the com-
pressed version.

Figure 8 shows computation times and memory consumption for
a range of heights for fixed model (3DBENCHY) and FDM param-
eters. Memory consumption is shown in a log-log-plot – interest-
ingly, compression not just drastically reduces memory consump-
tion, it also reduces the growth rate from quadratic to linear.

Increasing the height for fixed parameters is roughly similar to
decreasing ∆, but not necessarily exactly identical: note that in-
creasing the height leaves the size of T unchanged. If T changes
when ∆ changes depends on the type of manufacturing device, i.e.
whether the number of available slices is limited only by resolution
or by other factors.

The error table computation is fast – on the order of seconds. As
mentioned before, this part of the process can be easily performed
offline and in a streaming fashion.

Overall computation and memory are not a limiting factor of our
approach for the typical parameters of current 3D printing devices.

7.2 Manufacturing times

While the literature on adaptive slicing commonly states that fewer
slices lead to reduced printing times, we are not aware of actual
comparisons. We provide such numbers as part of our evaluation.

We find that, indeed, the number of slices generally influences
the printing time: an increasing number of slices resulting in an
increased printing time. This is due to the mechanical nature of the
process. Each layer takes some time to process. The effect of the
number of slices on the printing time largely depends on how the
thickness of each layer affects the printing time, and this varies with
the printing method.

In the case of FDM the speed is typically kept constant regardless
of layer thickness, as it is chosen to avoid oscillations and position-
ing errors. This means the number of slices directly correlates with
the production time. This is reflected in the times reported in Fig-
ures 13 and 15. The variation in times relative to the number slices
is due to different paths of the nozzle in each layer, which is a fac-
tor that is independent of the thickness but has significant impact
on the time. This factor would be very difficult to control.

Stereolithography (SLA) has certain exposure times for each
slice that depend on the layer thickness and a constant time to get
the next layer ready for production. The Autodesk Ember takes a
constant time of ∼ 4 seconds to adjust the system to process the
next layer, with exposure times varying between 2.5 seconds for
25 µm and 4.0 seconds for 100 µm. The expected improvement

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • Alexa, Hildebrand & Lefebvre

Table I. Parameters and computational resources for the practical tests.
Shape Method Z slice heights T δ ∆ error table computation optimal slicing

[mm] |T | [mm] [mm] [µm] #slices [MB] [sec] [MB] [msec]

Robot FDM 29 107 0.1-0.3 0.05 1.875 1687500 12.8746 5 8/0.75 1838
Gear FDM 13.5 107 0.1-0.3 0.05 1.875 797796 6.0867 17 2 0.634 411
Tardis FDM 33.6 107 0.1-0.3 0.05 1.875 1954152 14.909 4 11 / 0.611 2513
Lego FDM 11.3 80 0.05-0.2 0.05 1.875 501309 3.82468 1 2.73 / 0.18 420
Knight FDM 100 107 0.1-0.3 0.05 1.875 5777352 44.0777 44 103/ 5.13 23155
Castle SLA 16.3 75 0.025-0.1 0.025 1 1252784 9.55798 1 20 / 1.07 3215
Octo SLA 11.3 74 0.026-0.1 0.025 1 866552 6.61127 1 10 / 0.9 1503
3dbenchy SLA 14.4 74 0.026-0.1 0.025 1 1102152 8.40875 1 16/0.7 2526
Ghost (FDM) 28.5 80 0.05-0.2 0.05 1.875 1239948 9.46005 3 16/1.4 2725
Venus (FDM) 193 107 0.1-0.3 0.1 1.875 11300796 86.2182 19 394/8.4 88178

Fig. 9. Top: Uniformly sliced Lego brick with layer height of
0.099375mm (Left). Adaptively sliced brick using layer height between
0.05 − 0.2mm (Middle). Uniformly sliced brick with layer height of
0.19875mm. Bottom: Optimal sliced and 3D printed Lego bricks (left)
reproduces the height of real bricks (middle) more closely than uniformly
sliced ones (right) printed in the same time.

in processing can indeed be seen when comparing fine and coarse
uniform slicing (see Figures 13 and 14). Exposure times are not
linear, which explains why optimal slicing is faster for a slightly
larger number of slices compared to coarse uniform slicing.

7.3 Volumetric error and resulting quality

As can be appreciated in the close-ups in Figure 13, 14 and 15
our approach results in better precision and better reproduction of
surface detail than uniform slicing, for the same print time and same
print settings. The benefit is observable for both FDM and SLA
prints.

Our approach focuses mainly on precision. In some cases, how-
ever, improved precision is uncorrelated with visual or perceptual
properties. In particular, on FDM prints accumulations of thick
slices can result in visible changes of the surface reflectance proper-
ties (see e.g. the close-ups for the Knight model). We speculate that
manufacturers have meticulously optimized devices for the com-
mon uniform slicing and that some of the visual problems of adap-
tive slicing may well be remedied by proper adjustment of param-
eters inaccessible by the user.

Visual appearance of the shape is only one of several proper-
ties. Geometric precision is important in many areas where sev-

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000

 40 50 60 70 80 90 100 110 120 130 140

E(
Z)

Slices

uniform
fine-to-coarse (f2c)

coarse-to-fine (c2f*)
coarse-to-fine (c2f)

optimal

Uniform

Fine-to-coarseCoarse-to-fine

Optimal

Fig. 10. Top: (Left) Optimally sliced gear model with layer heights be-
tween 0.1 − 0.3mm and E(Z) = 22007.85. (Right) Uniformly sliced
with a layer height of 0.214 and E(Z) = 39122.30. Both prints have 64
slices. Bottom: The error maps illustrate that optimal slicing does not gen-
erate errors in the top region of the model where other adaptive schemes fail
to faithfully reproduce the correct height of the model.

eral shapes are stacked together [Luo et al. 2012; Chen et al. 2015;
Song et al. 2016], or where they have functional purpose [Coros
et al. 2013; Skouras et al. 2013; Koo et al. 2014]. We demonstrate
this with the example of a manufactured Lego brick. Lego bricks
have an exceptional production tolerance of 2µm around the raster
height of 9.6mm (brick without the connectors). We show that
by using optimal slicing it is possible to reproduce the production
heights faithfully. Using an uniform slicing approach will give good
results only if one chooses τ so that it adds up exactly to the correct
height. Otherwise the manufacturing will introduce errors.

We show that the error is visible and significant by measuring
the height of the manufactured Lego bricks (top row images of Fig-
ure 9). One can see that the uniformly sliced versions with layer
heights of 0.099375mm (left) and 0.19875mm (right) signifi-
cantly differ from the desired height while the optimal one matches
the desired result. Similar outcomes are illustrated for the gear ex-
ample in Figure 10. The error maps of the model show that other
approaches fail to reproduce the correct height of the model and
introduce large errors in the top part of the model.

In most cases, the gain of optimal slicing over the finest uni-
form sequence is small and may not be recognizable on manufac-
tured shapes. We provide an example that demonstrates the advan-
tage of optimal slicing (Figure 11): the shape is manufactured by

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 13

E(Z) = 2.297•106 E(Z) = 2.333•106

#slices = 12 #slices = 14

Fig. 11. Shape manufactured by cutting pieces from plywood that are
stacked, glued, and spray painted to generate the physical artifact. The final
result on the left shows optimal slicing, using 4,8 and 10mm sheets. Finest
uniform slicing (final result on the right) only uses the 4mm plywood. Op-
timal slicing has slightly smaller volumetric error and better reproduces the
desired height of the shape. We also prefer the visual appearance of optimal
slicing, as it better reproduces the eyes and the round top.

laser cutting sheets of plywood, than glueing them together, and
finally coating the object with spray paint to hide the layer struc-
ture. Plywood is available in only a few restricted heights – we used
poplar in thicknesses of 4,6,8, and 10mm. Optimal slicing results
in smaller error using fewer slices. The smaller number of slices
indeed resulted in slightly faster assembly. More importantly, uni-
form slicing performs worse than optimal slicing in aligning the
features with the slicing sequence – and this is clearly visible in the
resulting shapes.

Measuring the total error per slice, regardless of how the error
is defined, has a fundamental problem: all features within a slice
are treated equally, and the reproduction of details may depend on
other parts of the shape present in the same slice.

(a) (b) (c)

Fig. 12. Importance map specifies where the slicer has to use thinner slices
to lower the error in these areas. This example consists of 550 slices with
slice heights between 0.1mm to 0.3mm. (Left: Adaptive slicing without im-
portance values, Middle: Adaptive slicing including importance map. Right:
User-defined importance map.

We strongly believe that there is no error measure that will lead
to the desired behavior in all scenarios. It seems equally flexible to
adjust the volume error using the weights introduced in Section 3.

For generating this weight function we could use scenario-driven
information such as saliency or mechanical analysis. As automatic
generation of importance information may not always be possible,

we show how importance defined by the user is incorporated in
the slicing process: we offer a minimal brush tool for creating the
importance map. One example is shown in Figure 12. This map is
used as a simple error weight in the computation of E(zi, zj). One
can see how this weighting distributes the given set of 550 slices
based on the indicated importance. More slices are allocated at the
top of the shape, resulting in increased resolution on the head, while
fewer slices are used at the bottom.

8. CONCLUSION AND OUTLOOK

By formulating the slicing problem in a discrete setting and mea-
suring error by volume, we can provide optimal solutions for both,
computing the contour in each slice and computing the sequence
of slices. To our knowledge, this is the first approach to slicing that
guarantees to provide optimal results in a clearly specified sense; in
particular, it is the only approach to our knowledge that also con-
siders the effect of the contour in each slice on the error. The re-
sulting algorithms are natural and efficient in practice. As we have
demonstrated, the theoretical advantages do have an impact also on
practical results.

Depending on the manufacturing technology, volumetric error
correlates more or less strongly with visual or more generally, per-
ceptual quality. Establishing such connection for specific manufac-
turing technologies is an interesting research problem in its own.
Our approach can conveniently adapt to steering the slicing with
saliency data by supplying it as an importance map.

Variable slicing might be used in conjunction with techniques
that use different materials in different layers, such as to control
mechanical properties [Bickel et al. 2010] or color [Hergel and
Lefebvre 2014; Reiner et al. 2014; Brunton et al. 2015]. In fact,
varying the scale height in these approaches would make them con-
siderably more flexible.

Finally we note that recent techniques that optimize support
struts [Dumas et al. 2014; Schmidt and Umetani 2014] could ben-
efit from optimal slicing, by making sure they attach at exactly the
right height. Furthermore, printing accuracy would be important
for prints that try to achieve optical goals, e.g. [Schwartzburg et al.
2014], or where several printed parts need to be assembled to a
larger object [Luo et al. 2012; Chen et al. 2015; Song et al. 2016].

REFERENCES

AMENTA, N. AND BERN, M. 1999. Surface reconstruction by voronoi
filtering. Discrete & Computational Geometry 22, 4, 481–504.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H. 2012.
Fabricating articulated characters from skinned meshes. ACM Trans.
Graph. 31, 4 (July), 47:1–47:9.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFISTER, H.,
GROSS, M., AND MATUSIK, W. 2010. Design and Fabrication of Mate-
rials with Desired Deformation Behavior. ACM Trans. Graph. (Proceed-
ings of Siggraph 2010) 29, 4 (July), 63:1–63:10.

BRUNTON, A., ARIKAN, C. A., AND URBAN, P. 2015. Pushing the limits
of 3d color printing: Error diffusion with translucent materials. ACM
Trans. Graph. 35, 1 (Dec.), 4:1–4:13.

CHEN, X., ZHANG, H., LIN, J., HU, R., LU, L., HUANG, Q., BENES, B.,
COHEN-OR, D., AND CHEN, B. 2015. Dapper: Decompose-and-pack
for 3d printing. ACM Trans. Graph. 34, 6 (Oct.), 213:1–213:12.

CHENG, W., FUH, J., NEE, A., WONG, Y., LOH, H., AND MIYAZAWA, T.
1995. Multiobjective optimization of part building orientation in stere-
olithography. Rapid Prototyping Journal 1, 4, 12–23.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • Alexa, Hildebrand & Lefebvre

E(Z) = 740.01
#Slices = 481
Time = 55min 48sec

E(Z) = 740.00
#Slices = 325
Time = 38min 36sec

E(Z) = 1584.52
#Slices = 314
Time = 40min 16sec

uniform 0.03 mm adaptive 0.026-0.1 mm uniform 0.046 mm

same error same print time

3DBenchy

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 150 200 250 300 350 400 450 500 550 600

E(
Z)

Slices

uniform
fine-to-coarse (f2c)

coarse-to-fine (c2f*)
coarse-to-fine (c2f)

optimal

E(Z) = 31844.63
#Slices = 475
Time = 221 min

E(Z) = 31853.04
#Slices = 317
Time = 165 min

E(Z) = 55572.59
#Slices = 342
Time = 158 min

uniform 0.1 mm adaptive 0.026-0.1 mm uniform 0.14 mm

errorplots

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 200 300 400 500 600 700 800 900 1000

E(
Z)

Slices

uniform
fine-to-coarse (f2c)

coarse-to-fine (c2f*)
coarse-to-fine (c2f)

optimal

Fig. 13. We compare the same model using different 3D printing technologies. High-resolution uniform slicing (column 1), Optimal discrete slicing with the
same error (column 2), Low-resolution uniform slicing with the same printing time (column 3), error plot shows different methods and their slicing errors over
the number of slices. Note here, that if the number of possible slice heights is limited adaptive strategies such as c2f fail to generate longer and more accurate
slice sequences.

E(Z) = 591.42
#Slices = 354
Time = 41 min

E(Z) = 582.37
#Slices = 298
Time = 34 min

E(Z) = 740.73
#Slices = 283
Time = 34 min

uniform 0.032 mm adaptive 0.026-0.1 mm uniform 0.04 mm

same error same print time

E(Z) = 1154.80
#Slices = 547
Time = 61 min 40 s

E(Z) = 1197.61
#Slices = 349
Time = 42 min 27 s

E(Z) = 2128.01
#Slices = 328
Time = 44 min 17 s

uniform 0.03 mm adaptive 0.025-0.1 mm uniform 0.05 mm

Castle

Uniform Optimal

Coarse-to-fine Fine-to-coarse

errormaps

Uniform Optimal

Coarse-to-fine Fine-to-coarse

Fig. 14. 3D printed stereolithography results. High-resolution uniform slicing (column 1), Optimal discrete slicing with the same error (column 2), Low-
resolution uniform slicing with the same printing time (column 3), error maps show the error for column 2 and 3 results and additionally for a coarse-to-fine
and fine-to-coarse slicing approaches.

CORMIER, D., UNNANON, K., AND SANII, E. 2000. Specifying nonuni-
form cusp heights as a potential aid for adaptive slicing. Rapid Prototyp-

ing Journal 6, 3, 204–212.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FORBERG, M.,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Optimal Discrete Slicing • 15

E(Z) = 4207.59
#Slices = 304
Time = 81 min

E(Z) = 1828.73
#Slices = 137
Time = 41 min

E(Z) = 9170.65
#Slices = 137
Time = 43 min

uniform 0.110625 mm adaptive 0.1-0.3 mm uniform 0.245625 mm

E(Z) = 10619.68
#Slices = 134

E(Z) = 18755.54
#Slices = 134

optimal 0.1-0.3 mmuniform 0.2175 mm

Tardis

Robot

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 100 150 200 250 300 350

E(
Z)

Slices

uniform
fine-to-coarse (f2c)

coarse-to-fine (c2f*)
coarse-to-fine (c2f)

optimal

same error same print time

Uniform Optimal Coarse-to-fineFine-to-coarse

E(Z) = 13449.05
#Slices = 134

f2c 0.1-0.3 mm
E(Z) = 12525.90
#Slices = 134

c2f 0.1-0.3 mm

Fig. 15. 3D printed FDM results. Top row: High-resolution uniform slicing (column 1), Optimal discrete slicing with the same error (column 2), Low-
resolution uniform slicing with the same printing time (column 3), error plot shows different methods and their slicing errors over the number of slices. Bottom
row: Low-resolution uniform slicing (column 1), Optimal discrete slicing printed in the same time (column 2), Fine-to-coarse approach with larger overall
error (column 3), Coarse-to-fine slicing (column 4) and their corresponding error maps below.

SUMNER, R. W., MATUSIK, W., AND BICKEL, B. 2013. Computational
design of mechanical characters. ACM Trans. Graph. 32, 4 (July), 83:1–
83:12.

DANJOU, S. AND KÖHLER, P. 2009. Determination of optimal build di-
rection for different rapid prototyping applications. In Proceedings of
the 14th European Forum on Rapid Prototyping, A. Bernard, Ed. Ecole
Centrale Paris.

DOLENC, A. AND MÄKELÄ, I. 1994. Slicing procedures for layered man-
ufacturing techniques. Computer-Aided Design 26, 2, 119–126.

DUMAS, J., HERGEL, J., AND LEFEBVRE, S. 2014. Bridging the gap:
Automated steady scaffoldings for 3d printing. ACM Trans. Graph. 33, 4
(July), 98:1–98:10.

FEDERER, H. 1959. Curvature measures. Transactions of the American
Mathematical Society 93, 3, 418–491.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA.

HAYASI, M. T. AND ASIABANPOUR, B. 2013. A new adaptive slicing
approach for the fully dense freeform fabrication (fdff) process. Journal

of Intelligent Manufacturing 24, 4, 683–694.
HERGEL, J. AND LEFEBVRE, S. 2014. Clean color: Improving multi-

filament 3d prints. Computer Graphics Forum 33, 2, 469–478.
HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2013. Orthogonal slic-

ing for additive manufacturing. Computers & Graphics 37, 6, 669 – 675.
Shape Modeling International (SMI) Conference 2013.

HOPE, R., ROTH, R., AND JACOBS, P. 1997. Adaptive slicing with sloping
layer surfaces. Rapid Prototyping Journal 3, 3, 89–98.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Approximate
pyramidal shape decomposition. ACM Trans. Graph. 33, 6 (Nov.), 213:1–
213:12.

HUANG, P., WANG, C. C. L., AND CHEN, Y. 2013. Intersection-free and
topologically faithful slicing of implicit solid. Journal of Computing and
Information Science in Engineering 13, 2, 021009.

KONNO, H. AND KUNO, T. 1988. Best piecewise constant approximation
of a function of single variable. Operations Research Letters 7, 4, 205–
210.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J. 2014.
Creating works-like prototypes of mechanical objects. ACM Trans.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • Alexa, Hildebrand & Lefebvre

Graph. 33, 6 (Nov.), 217:1–217:9.
KULKARNI, P. AND DUTTA, D. 1996. An accurate slicing procedure for

layered manufacturing. Computer-Aided Design 28, 9, 683 – 697.
LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. 2005. Mesh saliency.

ACM Trans. Graph. 24, 3 (July), 659–666.
LEFEBVRE, S. 2013. Icesl: A gpu accelerated csg modeler and

slicer. In AEFA’13, 18th European Forum on Additive Manufacturing.
http://shapeforge.loria.fr/icesl/.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W. 2012. Chop-
per: Partitioning Models into 3D-printable Parts. ACM Trans. Graph.
(Proceedings of Siggraph Asia 2012) 31, 6 (Nov.), 129:1–129:9.

MANI, K., KULKARNI, P., AND DUTTA, D. 1999. Region-based adaptive
slicing. Computer-Aided Design 31, 5, 317 – 333.

MASOOD, H. S., RATTANAWONG, W., AND IOVENITTI, P. 2000. Part
build orientations based on volumetric error in fused deposition mod-
elling. The International Journal of Advanced Manufacturing Technol-
ogy 16, 3, 162–168.

PANDEY, P., REDDY, N. V., AND DHANDE, S. 2003a. Real time adaptive
slicing for fused deposition modelling. International Journal of Machine
Tools and Manufacture 43, 1, 61–71.

PANDEY, P. M., REDDY, N. V., AND DHANDE, S. G. 2003b. Slicing proce-
dures in layered manufacturing: a review. Rapid prototyping journal 9, 5,
274–288.

REINER, T., CARR, N., MECH, R., STAVA, O., DACHSBACHER, C., AND

MILLER, G. 2014. Dual-color mixing for fused deposition modeling
printers. Computer Graphics Forum 33, 2, 479–486.

SABOURIN, E., HOUSER, S. A., AND BØHN, J. H. 1996. Adaptive slicing
using stepwise uniform refinement. Rapid Prototyping Journal 2, 4, 20–
26.

SABOURIN, E., HOUSER, S. A., AND BØHN, J. H. 1997. Accurate exte-
rior, fast interior layered manufacturing. Rapid Prototyping Journal 3, 2,
44–52.

SCHMIDT, R. AND UMETANI, N. 2014. Branching support structures for
3d printing. In ACM SIGGRAPH 2014 Studio. SIGGRAPH ’14. ACM,
New York, NY, USA, 9:1–9:1.

SCHWARTZBURG, Y., TESTUZ, R., TAGLIASACCHI, A., AND PAULY,
M. 2014. High-contrast computational caustic design. ACM Trans.
Graph. 33, 4 (July), 74:1–74:11. Proc. SIGGRAPH 2014.

SINGHAL, S., JAIN, P. K., AND PANDEY, P. M. 2008. Adaptive slicing for
sls prototyping. Computer-Aided Design and Applications 5, 1-4, 412–
423.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B., AND

GROSS, M. 2013. Computational design of actuated deformable char-
acters. ACM Trans. Graph. (Proceedings of Siggraph 2013) 32, 4 (July),
82:1–82:10.

SONG, P., DENG, B., WANG, Z., DONG, Z., LI, W., FU, C.-W., AND

LIU, L. 2016. Cofifab: Coarse-to-fine fabrication of large 3d objects.
ACM Trans. Graph. 35, 4 (July), 45:1–45:11.

TATA, K., FADEL, G., BAGCHI, A., AND AZIZ, N. 1998. Efficient slicing
for layered manufacturing. Rapid Prototyping Journal 4, 4, 151–167.

THRIMURTHULU, K., PANDEY, P. M., AND REDDY, N. V. 2004. Optimum
part deposition orientation in fused deposition modeling. International
Journal of Machine Tools and Manufacture 44, 6, 585 – 594.

TYBERG, J. AND BØHN, J. H. 1998. Local adaptive slicing. Rapid Proto-
typing Journal 4, 3, 118–127.

TYBERG, J. AND BØHN, J. H. 1999. Fdm systems and local adaptive
slicing. Materials & design 20, 2, 77–82.

UMETANI, N. AND SCHMIDT, R. 2013. Cross-sectional Structural Anal-
ysis for 3D Printing Optimization. In SIGGRAPH Asia 2013 Technical
Briefs. SA ’13. 5:1–5:4.

VIDIMČE, K., WANG, S.-P., RAGAN-KELLEY, J., AND MATUSIK, W.
2013. Openfab: a programmable pipeline for multi-material fabrication.
ACM Trans. Graph. (Proceedings of Siggraph 2013) 32, 4 (July), 136:1–
136:12.

WANG, W., CHAO, H., TONG, J., YANG, Z., TONG, X., LI, H., LIU, X.,
AND LIU, L. 2015. Saliency-preserving slicing optimization for effective
3d printing. Computer Graphics Forum 34, 6, 148–160.

WANG, W. M., ZANNI, C., AND KOBBELT, L. 2016. Improved surface
quality in 3d printing by optimizing the printing direction. Computer
Graphics Forum 35, 2, 59–70.

XU, F., WONG, Y., LOH, H., FUH, J., AND MIYAZAWA, T. 1997. Optimal
orientation with variable slicing in stereolithography. Rapid Prototyping
Journal 3, 3, 76–88.

ZHANG, X., LE, X., PANOTOPOULOU, A., WHITING, E., AND WANG,
C. C. L. 2015. Perceptual models of preference in 3d printing direction.
ACM Trans. Graph. 34, 6 (Oct.), 215:1–215:12.

ZHAO, Z. AND LUC, Z. 2000. Adaptive direct slicing of the solid model for
rapid prototyping. International Journal of Production Research 38, 1,
69–83.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

